Alpha Thalassemia

Indications for Ordering

- Carrier screening
 - Healthy individuals of African, Mediterranean, Middle Eastern, and Southeast Asian descent
 - Individuals with a family history of alpha (α) thalassemia
 - Individuals with reproductive partners who are affected with, or carriers of, α thalassemia
 - Individuals with microcytosis and no identified iron deficiency
- Diagnostic testing
 - Confirm a clinical diagnosis of hemoglobin (Hb) Bart hydrops fetalis syndrome or Hb H disease
 - Confirm the identity of a variant detected by Hb evaluation that may be pathogenic or benign

Test Description

- Targeted testing for common deletions
 - PCR/gel electrophoresis
 - 7 common deletions of HBA1 and HBA2 genes (-α3.7, -α4.2, -(α)20.5, --SEA, --MED-I, --FIL, and --THAI)
- Deletion/duplication analysis by multiplex ligation-dependent probe amplification of the α-globin gene cluster (HBZ, HBM, HBA1, HBA2, HBQ1) and its HS-40 regulatory region
- PCR amplification followed by bidirectional sequencing of the HBA1 and HBA2 coding regions, intron/exon boundaries, and 3' polyadenylation signals

Tests to Consider

Typical testing strategy

- Molecular analysis for large deletions in the α-globin genes
- Consider α-globin gene sequencing if
 - Deletion testing does not explain the clinical phenotype **OR**
 - Hb evaluation suggests the presence of an abnormal α-chain variant

Related tests

Primary tests

- **Alpha Globin (HBA1 and HBA2) Deletion/Duplication 2011622**
 - Preferred first-tier genetic test for confirmation of suspected α thalassemia or α thalassemia trait
 - Detects common, rare, and novel deletions or duplications in the α-globin gene cluster

- **Alpha Thalassemia (HBA1 and HBA2) 7 Deletions 0051495**
 - Acceptable first-tier genetic test for confirmation of suspected α thalassemia or α thalassemia trait

- **Alpha Globin (HBA1 and HBA2) Sequencing and Deletion/Duplication 2011708**
 - Comprehensive genetic test for detection of α thalassemia or α thalassemia trait
 - Detects deletional and nondeletional variants in HBA1 and HBA2

Related tests

- **Hemoglobin Evaluation Reflexive Cascade 2005792**
 - Optimal test for the initial and confirmatory diagnosis of any suspected hemoglobinopathy
 - Cascade reflex testing may include electrophoresis, solubility testing, and/or molecular analysis of the globin genes

- **Hemoglobin Evaluation with Reflex to Electrophoresis and/or RBC Solubility 0050610**
 - Effective test for screening and follow up of individuals with known hemoglobinopathies
 - Optimal test for the initial diagnosis of a suspected hemoglobinopathy is Hemoglobin Evaluation Reflexive Cascade

- **Familial Mutation, Targeted Sequencing 2001961**
 - Useful when a pathogenic familial variant identifiable by sequencing is known

- **Familial Mutation, Targeted Sequencing, Fetal 2001980**
 - Fetal test to detect a previously characterized sequence variant in a family member

Disease Overview

Prevalence and/or incidence

- Most common inherited disorder of Hb worldwide
- Carrier frequencies in high-risk populations
 - African, African American (1/3)
 - Middle Eastern, Southeast Asian (1/20)
 - Mediterranean (1/30-50)
- Hb Bart hydrops fetalis syndrome and Hb H disease
 - More frequent in Southeast Asian, Asian Indian, and Mediterranean populations than in African populations
Symptoms
• α thalassemia silent carrier
 o Typically asymptomatic
 ▪ Borderline anemia or mild microcytosis may be present
 ▪ Often misdiagnosed as iron deficiency
 o Normal Hb electrophoresis
• α thalassemia trait
 o Mild microcytic anemia may be present
 ▪ Often misdiagnosed as iron deficiency
 o Normal Hb electrophoresis
• Hb H disease
 o Moderate to severe form of α thalassemia
 o Moderate microcytic hypochromic anemia
 o Hemolysis with Heinz bodies
 o Splenomegaly
 o Rare extramedullary hematopoiesis
 o Propensity for acute hemolysis after oxidative stress, drug therapy, or infection
• Hb Bart hydrops fetalis syndrome
 o Most severe form of α thalassemia
 o Fetus
 ▪ Lethal in fetal or early neonatal period
 ▪ Generalized edema, ascites, pleural and pericardial effusions
 ▪ Severe hypochromic anemia
 ▪ Usually detected on ultrasound at 22-28 weeks gestation
 o Maternal complications during pregnancy
 ▪ Preeclampsia
 ▪ Polyhydramnios or oligohydramnios
 ▪ Antepartum hemorrhage
 ▪ Premature delivery

Physiology
• Typically, individuals have four functioning α-globin genes (αα/αα)
 o Two genes, HBA1 and HBA2, are present on each copy of chromosome 16
 o α-globin chains function as subunits of fetal Hb (Hb F - α2γ2) and adult Hb (Hb A – α2β2)
• Genotype/phenotype correlations in α thalassemia are complex and may be influenced by coinheritance of other Hb variants or α-globin gene duplications
• α thalassemia silent carrier
 o One nonfunctional α-globin gene (-α/αα)
• α thalassemia trait
 o Two nonfunctional α-globin genes in trans (-α/-α) or cis (-/-αα)
• Hb H disease
 o Three nonfunctional α-globin genes (-/-α)
 o Hb Bart hydrops fetalis syndrome
 o Four nonfunctional α-globin genes (-/-)

Genetics
Genes – HBA1 and HBA2
Inheritance – autosomal recessive

Variants
• HBA1 and HBA2 large gene deletions account for up to 90% of α thalassemia
 o -α3.7 and -α4.2 deletions result in the deletion of a single gene
 o -α20.5, --SEA, --MED-I, --FIL, and --THAI deletions result in the deletion of the HBA1 and HBA2 genes from the same chromosome
• Point variants and regulatory region variants occur mainly in HBA2 and account for up to 10% of causative variants
 o Nondeletional variants include
 ▪ Point variants that inactivate the gene
 ▪ Small insertions/deletions
 ▪ Variants that result in unstable α-globin protein (e.g., Hb Constant Spring)
 o Nondeletional α-globin variants may be pathogenic or benign
 ▪ Both may result in an abnormal protein detectable by Hb evaluation
 ▪ Pathogenic nondeletional variants often have a more severe effect than single gene deletions
• α-globin gene triplications result in three active α-globin genes on a single chromosome
 o Typically benign
 o May alter expected clinical phenotypes and hematological features when co-inherited with β thalassemia

Test Interpretation
Sensitivity/specificity
• Analytical sensitivity/specificity – 99% for both duplication/deletion analysis and sequencing
• Clinical sensitivity – most pathogenic HBA1 and/or HBA2 gene variants are large deletions not detectable by sequencing
 o Deletion – ≤90%, depending on ethnicity (Origa, 2013)
 o Sequencing – ≤9%, depending on ethnicity (Origa, 2013)

Results and limitations – see table

References
<table>
<thead>
<tr>
<th>Negative result</th>
<th>Alpha Thalassemia (HBA1 and HBA2) 7 Deletions</th>
<th>Alpha Globin (HBA1 and HBA2) Deletion/Duplication</th>
<th>Alpha Globin (HBA1 and HBA2) Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No common α-globin gene deletions were detected</td>
<td>No large α-globin deletions or duplications were detected</td>
<td>No pathogenic variants were detected</td>
<td></td>
</tr>
<tr>
<td>Risk for α thalassemia is reduced but not excluded</td>
<td>Risk for α thalassemia is reduced but not excluded</td>
<td>o Large deletions of the α-globin genes, which account for the majority of variants, are not detected by sequencing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive result</th>
<th>Alpha Thalassemia (HBA1 and HBA2) 7 Deletions</th>
<th>Alpha Globin (HBA1 and HBA2) Deletion/Duplication</th>
<th>Alpha Globin (HBA1 and HBA2) Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted genotype (-α/αα)</td>
<td>Predicted genotype (-α/αα)</td>
<td>One pathogenic variant detected</td>
<td></td>
</tr>
<tr>
<td>Individual is predicted to be a silent carrier</td>
<td>Individual is predicted to be a silent carrier</td>
<td>o Individual is predicted to be a carrier of α thalassemia</td>
<td></td>
</tr>
<tr>
<td>Predicted genotype (-α/-α) or (-/-αα)</td>
<td>Predicted genotype (-α/-α) or (-/-αα)</td>
<td>o A more severe disorder is possible if another undetected α-globin variant is present</td>
<td></td>
</tr>
<tr>
<td>Individual is predicted to have α thalassemia trait</td>
<td>Individual is predicted to have α thalassemia trait</td>
<td>Two pathogenic variants detected</td>
<td></td>
</tr>
<tr>
<td>Predicted genotype (-/-α)</td>
<td>Predicted genotype (-/-α)</td>
<td>o Individual is predicted to have α thalassemia trait</td>
<td></td>
</tr>
<tr>
<td>Individual is predicted to be affected with Hb H disease</td>
<td>Predicted genotype (-/-α)</td>
<td>o Homozygosity or compound heterozygosity for nondeletional variants results rarely in Hb H disease</td>
<td></td>
</tr>
<tr>
<td>Predicted genotype (-/--)</td>
<td>Predicted genotype (-/--)</td>
<td>o Result is consistent with Hb Bart hydrops fetalis syndrome</td>
<td></td>
</tr>
<tr>
<td>Result is consistent with Hb Bart hydrops fetalis syndrome</td>
<td>Predicted genotype (ααα/ααα)</td>
<td>o Large deletions/duplications and some variants of the regulatory regions will not be detected</td>
<td></td>
</tr>
<tr>
<td>o An extra functional α-globin gene present</td>
<td></td>
<td>o The phase of identified variants may not be determined</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Diagnostic errors can occur due to rare sequence variations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inconclusive result</th>
<th>Deletion or duplication of unknown clinical significance detected</th>
<th>Variant of unknown clinical significance detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion or duplication of unknown clinical significance detected</td>
<td>Variant of unknown clinical significance detected</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations</th>
<th>Alpha Thalassemia (HBA1 and HBA2) 7 Deletions</th>
<th>Alpha Globin (HBA1 and HBA2) Deletion/Duplication</th>
<th>Alpha Globin (HBA1 and HBA2) Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare α-globin gene deletions, nondeletional variants, gene duplications and variants of the regulatory region will not be detected</td>
<td>Breakpoints of large deletions/duplications will not be determined; therefore, it may not be possible to distinguish variants of similar size</td>
<td>o Large deletions/duplications and some variants of the regulatory regions will not be detected</td>
<td></td>
</tr>
<tr>
<td>Diagnostic errors can occur due to rare sequence variations</td>
<td>This assay does not assess for nondeletional variants within the coding or regulatory regions of the α-globin cluster genes</td>
<td>o The phase of identified variants may not be determined</td>
<td></td>
</tr>
<tr>
<td>Rare syndromic or acquired forms of α thalassemia will not be detected</td>
<td>Individuals carrying both a deletion and duplication within the α-globin gene cluster may appear to have a normal number of α-globin gene copies</td>
<td>o Diagnostic errors can occur due to rare sequence variations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rare syndromic or acquired forms of α thalassemia associated with ATRX variants will not be detected</td>
<td>Sequencing of both HBA1 and HBA2 may not be possible in individuals harboring large α-globin deletions on both alleles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnostic errors can occur due to rare sequence variations</td>
<td>Rare syndromes associated with α thalassemia, such as ATR-X and ATR-16, will not be detected</td>
<td></td>
</tr>
</tbody>
</table>