

Maturity-Onset Diabetes of the Young and Neonatal Diabetes Panel, Sequencing

Last Literature Review: December 2020 Last Update: September 2023

Maturity-onset diabetes of the young (MODY) typically occurs in adolescents or young adults <35 years of age. Affected individuals often have mild stable fasting hyperglycemia, weak response to pharmacologic therapy, a personal or family history of neonatal diabetes or neonatal hypoglycemia, and an autosomal dominant pattern of inheritance. Neonatal diabetes (ND) is defined by persistent hyperglycemia in infants <6 months of age. Molecular testing is recommended to guide treatment for MODY and ND.

Disease Overview

Symptoms/Associated Disorders

Maturity-Onset Diabetes of the Young¹:

- · Early-onset diabetes in adolescents or young adults
- Absence of pancreatic islet autoantibodies
- Endogenous insulin production 5 years after onset
- Low insulin requirement
- Lack of ketoacidosis when insulin is omitted
- Lack of obesity or acanthosis nigricans
- · Normal triglyceride and high-density lipoprotein levels

Neonatal Diabetes:

- Persistent hyperglycemia (>150-200 mg/dL) in infants <6 months of age
- Mean age of diagnosis: 7 weeks
- · May present with intrauterine growth restriction, glucosuria, ketonuria, hyperketonemia, severe dehydration, and failure to thrive
- · Decreased fecal elastase and increased fat in stool in infants with pancreatic hypoplasia

Etiology

Pathogenic variants in several overlapping genes for MODY and ND

- Pathogenic variants in GCK (30-50%),² HNF1A (30-65%),^{3,4} HNF4A (5-10%),³ and HNF1B (<5%)⁵ are causative for at least 70% of MODY.
- Pathogenic variants in GCK (4%),^{4.6} INS (20%),^{7.8} ABCC8 (19%),⁹ and KCNJ11 (30%)¹⁰ are causative for 73% of ND.

Epidemiology/Prevalence

- Prevalence of MODY is estimated at 1-3%^{7,11} in the U.S.
- Prevalence of ND is rare. The incidence has been reported between 1 in 160,000 in Austria to 1 in 215,000 in Slovakia.^{12,13}

Inheritance

- Autosomal dominant (AD) for the main causative genes for MODY: GCK, HNF1A, HNF4A, and HNF1B
- AD and autosomal recessive (AR) for main causative genes for ND
 - AD: INS, ABCC8, and KCNJ11
 - AR: GCK

Penetrance

Dependent on the causative gene

- Pathogenic HNF1A variants are causative for 30-60% of MODY and have a 63% penetrance by age 25, 79% penetrance by 35, and 96% penetrance by age 55.
- Pathogenic variants in KCNJ11 and ABCC8 have shown reduced penetrance for ND.

Featured ARUP Testing

MODY and Neonatal Diabetes Panel, Sequencing 3001593

Method: Massively Parallel Sequencing

Regions of low coverage and reported variants are confirmed by Sanger sequencing as necessary.

Test Description

Clinical Sensitivity

At least 70% for MODY and 73% for ND (see Etiology above)

Limitations

- A negative result does not exclude a diagnosis of MODY or ND.
- Diagnostic errors can occur due to rare sequence variations.
- Interpretation of the test result may be impacted if the patient has had an allogeneic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of targeted genes
 - Most regulatory region and deep intronic variants
 - Noncoding transcripts
 - The following exons are not sequenced due to technical limitations of the assay:
 - *CEL* (NM_001807) 1, 8, 9, 11
 - ABCC8 (NM_001351295) partial exon 14 (Chr11:17449973-17450018)
 - The following may not be detected:
 - Deletions/duplications/insertions of any size by massively parallel sequencing
 - Some variants due to technical limitations in the presence of pseudogenes, repetitive, or homologous regions
 - Low-level somatic variants

Analytic Sensitivity

For massively parallel sequencing:

Variant Class	Analytic Sensitivity (PPA) Estimate ^a (%)	Analytic Sensitivity (PPA) 95% Credibility Region ^a (%)
SNVs	99.2	96.9-99.4
Deletions 1-10 bp	93.8	84.3-98.2
Deletions 11-44 bp	99.9	87.8-100
Insertions 1-10 bp	94.8	86.8-98.5
Insertions 11-23 bp	99.9	62.1-100

^aGenes included on this test are a subset of a larger methods-based validation from which the PPA values are derived.

bp, base pairs; PPA, positive percent agreement; SNVs, single nucleotide variants

Genes Tested

Gene	MIM Number	Disorder	Inheritance
ABCC8	600509	NIDDM	AD
		Diabetes mellitus, permanent neonatal 3, with or without neurologic features	AD, AR
		Diabetes mellitus, transient neonatal 2	AD
		Hyperinsulinemic hypoglycemia, familial, 1	AD, AR

NIDDM, noninsulin-dependent diabetes mellitus; IDDM, insulin-dependent diabetes mellitus; XLR, X-linked recessive

Gene	MIM Number	Disorder	Inheritance
		Hypoglycemia of infancy, leucine sensitive	AD
APPL1	604299	MODY, type 14	AD
CEL	114840	MODY, type 8	AD
EIF2AK3	604032	Wolcott-Rallison syndrome	AR
FOXP3	300292	Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked	XLR
GATA4	600576	Neonatal and childhood diabetes	AD
GATA6	601656	Pancreatic agenesis and congenital heart defects	AD
GCK	138079	NIDDM, late onset	AD
		Hyperinsulinemic hypoglycemia, familial, 3	AD
		MODY, type 2	AD
		Diabetes mellitus, permanent neonatal 1	AR
HNF1A	142410	NIDDM 2	AD
		IDDM 20	AD
		MODY, type 3	AD
HNF1B	189907	NIDDM	AD
		Renal cysts and diabetes syndrome	AD
HNF4A	600281	NIDDM	AD
		Fanconi renotubular syndrome 4, with MODY	AD
		MODY, type 1	AD
INS	176730	IDDM2	AD
		Diabetes mellitus, permanent neonatal	AD, AR
		Hyperproinsulinemia	AD
		MODY, type 10	AD
KCNJ11	600937	Diabetes mellitus, transient neonatal, 3	AD
		Diabetes, permanent neonatal 2, with or without neurologic features	AD
		Hyperinsulinemic hypoglycemia, familial 2	AR

NIDDM, noninsulin-dependent diabetes mellitus; IDDM, insulin-dependent diabetes mellitus; XLR, X-linked recessive

Gene	MIM Number	Disorder	Inheritance
		MODY, type 13	AD
NEUROD1	601724	MODY, type 6	AD
NEUROG3	604882	Diarrhea 4, malabsorptive, congenital	AR
PDX1	600733	MODY, type 4	AD
		Pancreatic agenesis 1	AR
RFX6	612659	Mitchell-Riley syndrome	AR
SLC19A2	603941	Thiamine-responsive megaloblastic anemia syndrome	AR
WFS1	606201	NIDDM	AD
		Wolfram-like syndrome, AD	AD
		Wolfram syndrome 1	AR
ZFP57	612192	Diabetes mellitus, transient neonatal, 1	AD

NIDDM, noninsulin-dependent diabetes mellitus; IDDM, insulin-dependent diabetes mellitus; XLR, X-linked recessive

References

- 1. Chakera AJ, Spyer G, Vincent N, et al. The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. *Diabetes Care*. 2014;37(5):1230-1236.
- 2. Garin I, Rica I, Estalella I, et al. Haploinsufficiency at GCK gene is not a frequent event in MODY2 patients. Clin Endocrinol (Oxf). 2008;68(6):873-878.
- 3. Colclough K, Bellanne-Chantelot C, Saint-Martin C, et al. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. *Hum Mutat*. 2013;34(5):669-685.
- 4. Njølstad PR, Sagen JV, Bjørkhaug L, et al. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. *Diabetes* . 2003;52(11):2854-2860.
- 5. Bellanné-Chantelot C, Clauin S, Chauveau D, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. *Diabetes*. 2005;54(11):3126-3132.
- 6. Njølstad PR, Søvik O, Cuesta-Muñoz A, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001;344(21):1588-1592.
- 7. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055-62.
- 8. Støy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040-15044.
- 9. Babenko AP, Polak M, Cavé H, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355(5):456-66.
- 10. Ellard S, Flanagan SE, Girard CA, et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet. 2007;81(2):375-382.
- 11. Shepherd M, Ellis I, Ahmad AM, et al. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med. 2001;18(5):417-421.
- 12. Stanik J, Gasperikova D, Paskova M, et al. Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. J Clin Endocrinol Metab. 2007;92(4):1276-1282.
- 13. Wiedemann B, Schober E, Waldhoer T, et al. Incidence of neonatal diabetes in Austria-calculation based on the Austrian Diabetes Register. Pediatr Diabetes . 2010;11(1):18-23.

Related Information

Diabetes Mellitus - Type 1, Type 2, and Gestational

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com

© 2024 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787