Leukemia/Lymphoma Phenotyping Evaluation by Flow Cytometry

Leukemia and lymphoma analysis by flow cytometry aids in identifying the tumor lineage, which in most cases is identified as T cell, B cell, or myeloid. Lineage identification can provide a confirmatory diagnosis or differential diagnosis, prognosis, and treatment options.

Featured ARUP Testing

Leukemia/Lymphoma Phenotyping Evaluation by Flow Cytometry 3001780

Method: Flow Cytometry

Disease Overview

Diagnosis/Treatment Issues

- · Phenotyping by flow cytometry can aid in the evaluation of hematopoietic neoplasms.
 - Specimens include bone marrow, whole blood, tissue, or fluid.
- Phenotyping may aid in monitoring response to therapy in individuals with an established diagnosis of hematopoietic neoplasms.

Test Interpretation

- Markers are analyzed as needed, based on clinical evidence, to fully characterize any abnormalities identified by the screening panel.
 - · Additional markers are selected based on pathologist interpretation of the screening panel results.
- · Antigens included:
 - $\circ~$ T cell: CD1a, CD2, CD3, CD4, CD5, CD7, CD8, TCR $\gamma\text{-}\delta$, cytoplasmic CD3
 - B cell: CD10, CD19, CD20, CD22, CD23, CD103, CD200, kappa, lambda, cytoplasmic kappa, cytoplasmic lambda
 - Myeloid/monocyte: CD11b, CD13, CD14 (Mo2), CD14 (MY4), CD15, CD33, CD64, CD117, myeloperoxidase
- Miscellaneous: CD11c, CD16, CD25, CD30, CD34, CD38, CD41, CD42b, CD45, CD56, CD57, CD61, HLA-DR, glycophorin, TdT, bcl-2, ALK-1, CD123, CD138, CD200, CD26, CD45, CRLF-2

Clinical Sensitivity

Limit of detection is 0.01–1.0% depending on phenotype and disease.

Results

- · Antigens will be reported as positive or negative.
- Interpretive comments that further characterize intensity patterns are included.
 - o Dim, bright, variable, or partial may be reported.
- Light-chain expression may be reported as polytypic/polyclonal or restricted/monotypic/monoclonal.
 - May include kappa/lambda ratio.
- Pattern of CD antigen testing will be interpreted with recommendations for further testing, if indicated.

Limitations

- Some hematopoietic neoplasms do not show phenotypic abnormalities and may not be detected by flow cytometry.
- · Poor cell viability may adversely affect antigens and impede the ability to properly identify neoplastic cells.
- Flow results cannot be used alone to diagnose malignancy.
 - Results should be interpreted in conjunction with morphology, clinical information, and other necessary ancillary tests for a definitive diagnosis.

Related Testing Strategy Information

Leukemia/Lymphoma	ARUP Consult Resource
Acute leukemia	 Acute Lymphoblastic Leukemia - ALL Acute Myeloid Leukemia - AML
Follicular, Burkitt, or diffuse large B-cell lymphoma	Mature B-Cell LymphomasT-Cell and NK-Cell Lymphomas
Chronic lymphocytic leukemia, small lymphocytic lymphoma, hairy cell leukemia, and mantle cell lymphoma	Chronic Lymphocytic Leukemia - CLL Mature B-Cell Lymphomas

Related Information

Hematologic Malignancies Minimal Residual Disease Testing

> ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com Content Review June 2019 | Last Update August 2023

© 2023 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787