

Duchenne/Becker Muscular Dystrophy

Last Literature Review: November 2025 Last Update: December 2025

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked degenerative muscle disorders caused by pathogenic variants in the *DMD* gene. Testing for *DMD* variants can be used to confirm a diagnosis of DMD/BMD in symptomatic individuals or to determine carrier status for females with a family history of DMD/BMD or dilated cardiomyopathy (DCM). Prenatal testing for familial *DMD* variants is also available.

Disease Overview

Symptoms

- DMD
 - Delayed childhood milestones (e.g., sitting, standing, walking, climbing)
 due to progressive symmetrical muscular weakness
 - o Cardiomyopathy onset: approximately 14 years
 - 95% have cardiovascular involvement
 - Wheelchair dependence: typically by 12 years
 - Laboratory findings
 - No observable dystrophin expression
 - · Serum CK levels: significantly increased
- BMD
 - · Later-onset muscle weakness
 - Cardiomyopathy onset: approximately 15 years
 - Wheelchair dependence: 20s-30s
 - Laboratory findings
 - Dystrophin expression: 20-100%
 - Serum CK levels: increased
- DMD-associated dilated cardiomyopathy (DCM)
 - · Rapidly progressive disease course in the absence of skeletal myopathy
 - o Male age of onset: teens and 20s
 - Female age of onset: 30s and 40s

Incidence

DMD: 1/3,500 male births worldwideBMD: 1/19,000 male births worldwide

Genetics

Gene: DMD

Inheritance: X-linked

Penetrance

- Males: 100%
- · Females: varies with X-chromosome inactivation

De novo variants: approximately one-third of cases

Featured ARUP Testing

Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication with Reflex to Sequencing 2011241

Method: Multiplex Ligation-Dependent Probe Amplification (MLPA) / Massively Parallel Sequencing

- Most comprehensive DMD gene test for DMD or RMD
- · Deletion/duplication analysis is performed first
 - If no large deletions or duplications are detected and/or results do not explain the clinical scenario, sequencing of the DMD gene is performed
- Deletion/duplication and sequencing components are also orderable separately, see below

If a familial sequence variant has been previously identified, targeted sequencing for that variant may be appropriate. Refer to the Laboratory Test Directory for additional test options.

Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication 2011235

Method: Multiplex Ligation-Dependent Probe Amplification (MLPA)

- Appropriate first-tier genetic test for diagnostic testing or carrier screening for DMD or BMD
- Recommended test for a known familial DMD large deletion or duplication previously identified in a family member

Duchenne/Becker Muscular Dystrophy (DMD) Sequencing 2011153

Method: Massively Parallel Sequencing

- Appropriate follow-up testing if previous DMD gene deletion/duplication testing did not identify a causative variant
- Recommended first-tier tests are Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication with Reflex to Sequencing (2011241) or Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication (2011235)

Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication, Fetal 2011231

Method: Multiplex Ligation-dependent Probe Amplification

Prenatal diagnostic testing for known *DMD* gene deletions/duplications previously identified in a family member

Typical Diagnostic Testing Strategy

- · Initial testing for DMD/BMD
 - · Serum creatine kinase (CK) concentration
 - · Muscle biopsy with dystrophin studies
- · Molecular testing
 - · Deletion/duplication analysis
 - Sequencing analysis

Typical Carrier Testing Strategy

- For a known familial DMD variant, targeted testing is recommended.
- If there is a family history of DMD/BMD but the causative familial variant is unknown, test an affected relative then perform targeted testing for the identified variant in at-risk relatives.
- If an affected relative cannot be tested, at-risk relatives should be tested by deletion/duplication analysis first because most *DMD* variants are large deletions and duplications.
 - If negative, consider DMD sequencing.

Recommended Follow-Up Testing

Cardiac evaluation for affected individuals and carriers

Test Description

Clinical Sensitivity

- DMD
 - Deletion/duplication: 55-75%
 - Sequencing: 20-35%
- BMD
 - Deletion/duplication: 75-90%
 - Sequencing: 10-20%

Results

- · Positive
 - One pathogenic variant detected in DMD gene
 - Causative for DMD/BMD in males
 - Female carriers are variably affected
- Negative
 - · No pathogenic variants identified
 - Risk for being affected with, or a carrier of, DMD/BMD, is reduced but not excluded.
- Inconclusive
 - · Variants of uncertain clinical significance detected
 - · Whether variants are benign or pathogenic is unknown

Limitations

- · A negative result does not exclude a heritable form of muscular dystrophy.
- Diagnostic errors can occur due to rare sequence variations.
- Interpretation of this test result may be impacted if the individual has had an allogeneic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of the targeted gene(s)
 - Regulatory region variants and deep intronic variants
 - Breakpoints of large deletions/duplications
 - Noncoding transcripts
- The following may not be detected:
 - Deletions/duplications/insertions of any size by massively parallel sequencing
 - · Single exon deletions/duplications based on the breakpoints of the rearrangement
 - Some variants due to technical limitations in the presence of pseudogenes, repetitive, or homologous regions

· Low-level somatic variants

Analytic Sensitivity

- For MLPA: greater than 99%
- For massively parallel sequencing:

Variant Class	Analytic Sensitivity (PPA) Estimate ^a (%)	Analytic Sensitivity (PPA) 95% Credibility Region ^a (%)
SNVs	99.2	96.9-99.4
Deletions 1-10 bp	93.8	84.3-98.2
Deletions 11-44 bp	100	87.8-100
Insertions 1-10 bp	94.8	86.8-98.5
Insertions 11-23 bp	100	62.1-100

DMD gene is a subset of a larger methods-based validation from which the PPA values are derived.

bp, base pairs; PPA, positive percent agreement; SNVs, single nucleotide variants

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com