Duchenne/Becker Muscular Dystrophy Deletion/Duplication with Reflex to Sequencing

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked degenerative muscle disorders caused by pathogenic variants in the DMD gene. Testing for DMD variants can be used to confirm a diagnosis of DMD/BMD in symptomatic individuals or to determine carrier status for females with a family history of DMD/BMD or dilated cardiomyopathy (DCM). Prenatal testing for familial DMD variants is also available.

Disease Overview

Symptoms

- **DMD**
 - Delayed childhood milestones (eg, sitting, standing, walking, climbing) due to progressive symmetrical muscular weakness
 - Cardiomyopathy onset – ~14 years
 - 95% have cardiovascular involvement
 - Wheelchair dependence – typically by 12 years
 - Laboratory findings
 - No observable dystrophin expression
 - Serum CK levels – significantly increased

- **BMD**
 - Later-onset muscle weakness
 - Cardiomyopathy onset – ~15 years
 - Wheelchair dependence – 20s-30s
 - Laboratory findings
 - Dystrophin expression – 20-100%
 - Serum CK levels – increased

- **DMD-Associated Dilated Cardiomyopathy (DCM)**
 - Rapidly progressive disease course in the absence of skeletal myopathy
 - Male age of onset – teens and 20s
 - Female age of onset – 30s and 40s

Incidence

- DMD – 1/3,500 male births worldwide
- BMD – 1/19,000 male births worldwide

Genetics

Gene – DMD

Tests to Consider

Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication with Reflex to Sequencing 2011241

Method: Multiplex Ligation-dependent Probe Amplification/Massively Parallel Sequencing

- Most comprehensive DMD gene test for DMD or BMD
- Deletion/duplication analysis is performed first
 - If no large deletions or duplications are detected and/or results do not explain the clinical scenario, sequencing of the DMD gene is performed
- Deletion/duplication and sequencing components are also orderable separately, see below

Duchenne/Becker Muscular Dystrophy (DMD) Deletion/Duplication 2011235

Method: Multiplex Ligation-dependent Probe Amplification

- Appropriate first-tier genetic test for diagnostic testing or carrier screening for DMD or BMD; does not detect sequence variants
- Recommended test for a known familial DMD large deletion or duplication previously identified in a family member
- A copy of the family member’s test result documenting the known familial variant is required

Duchenne/Becker Muscular Dystrophy (DMD) Sequencing 2011153

Method: Massively Parallel Sequencing
Appropriate second-tier test for diagnostic or carrier screening for DMD or BMD after result of deletion/duplication analysis is negative

Recommended test for a known familial DMD sequence variant previously identified in a family member.

A copy of the family member’s test result documenting the known familial variant is required.

This test is performed on prenatal samples at risk for a known familial DMD deletion or duplication.

A copy of the family member’s test result documenting the known familial variant is required.

Inheritance – X-linked

Penetrance

- Males – 100%
- Females – varies with X-chromosome inactivation

De novo variants – ~1/3 cases

Typical Diagnostic Testing Strategy

- Initial testing for DMD/BMD
 - Serum creatine kinase (CK) concentration
 - Muscle biopsy with dystrophin studies
- Molecular testing
 - Deletion/duplication analysis
 - Sequencing analysis

Typical Carrier Testing Strategy

- For a known familial DMD variant, targeted testing is recommended.
- If there is a family history of DMD/BMD but the causative familial variant is unknown, test an affected relative then perform targeted testing for the identified variant in at-risk relatives.
- If an affected relative cannot be tested, at-risk relatives should be tested by deletion/duplication analysis first because most DMD variants are large deletions and duplications.
 - If negative, consider DMD sequencing.

Recommended Follow-Up Testing

Cardiac evaluation for affected individuals and carriers

Test Description

Clinical Sensitivity

- DMD
 - Deletion/duplication – 55-75%
 - Sequencing – 20-35%
- BMD
 - Deletion/duplication – 75-90%
 - Sequencing – 10-20%

Results

- Positive
 - One pathogenic variant detected in DMD gene
 - Causative for DMD/BMD in males
 - Female carriers are variably affected

See Related Tests
Negative
- No pathogenic variants identified
 - Risk for being affected with, or a carrier of, DMD/BMD, is reduced but not excluded.

Inconclusive
- Variants of uncertain clinical significance detected
- Whether variants are benign or pathogenic is unknown

Limitations
- A negative result does not exclude a heritable form of muscular dystrophy.
- Diagnostic errors can occur due to rare sequence variations.
- Interpretation of this test result may be impacted if the individual has had an allogeneic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of the targeted gene(s)
 - Regulatory region variants and deep intronic variants
 - Breakpoints of large deletions/duplications
 - Noncoding transcripts
- The following may not be detected:
 - Deletions/duplications/insertions of any size by massively parallel sequencing
 - Some variants due to technical limitations in the presence of pseudogenes, repetitive, or homologous regions
 - Low-level somatic variants

Analytical Sensitivity
- For MLPA – greater than 99%
- For massively parallel sequencing:

<table>
<thead>
<tr>
<th>Variant Class</th>
<th>Analytical Sensitivity (PPA) Estimatea (%)</th>
<th>Analytical Sensitivity (PPA) 95% Credibility Regiona (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVs</td>
<td>99.2</td>
<td>96.9-99.4</td>
</tr>
<tr>
<td>Deletions 1-10 bp</td>
<td>93.8</td>
<td>84.3-98.2</td>
</tr>
<tr>
<td>Deletions 11-44 bp</td>
<td>100</td>
<td>87.8-100</td>
</tr>
<tr>
<td>Insertions 1-10 bp</td>
<td>94.8</td>
<td>86.8-98.5</td>
</tr>
<tr>
<td>Insertions 11-23 bp</td>
<td>100</td>
<td>62.1-100</td>
</tr>
</tbody>
</table>

DMD gene is a subset of a larger methods-based validation from which the PPA values are derived.

bp, base pairs; PPA, positive percent agreement; SNVs, single nucleotide variants

References

Related Tests
Creatine Kinase, Total, Serum or Plasma 0020010

Method: Quantitative Enzymatic