

APC- and MUTYH-Associated Polyposis Panel, Sequencing and Deletion/Duplication

Familial adenomatous polyposis (FAP) is an *APC*-associated polyposis condition caused by pathogenic variants in the *APC* gene resulting in the development of hundreds to thousands of adenomatous colonic polyps beginning in early adolescence. The lifetime risk for colorectal cancer (CRC) in individuals with FAP is 100%. Additional symptoms may include dental anomalies, polyps of the gastric fundus and duodenum, and congenital hypertrophy of the retinal pigment epithelium (CHRPE). Pathogenic *APC* variants may also cause other related polyposis conditions, including attenuated FAP (AFAP) or gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS).

MUTYH -associated polyposis (MAP), caused by biallelic pathogenic variants in the MUTYH gene, can result in the development of colon polyps that are less numerous (typically 10-100s) and is often diagnosed later in life. Genetic testing may be used to assess individuals at risk for FAP, other APC-associated polyposis conditions, or MAP due to a suggestive personal or family history.

Disease Overview

Associated Disorders

Disorder	Polyp and Cancer Characteristics	Age of Onset	Other Symptoms
FAP	Hundreds to thousands of adenomatous colonic polyps may develop Polyps may develop in gastric fundus and duodenum	Symptom onset at 7-36 years (generally early adolescence) Mean age of CRC diagnosis is 39 years in untreated individuals Without preventive colectomy, all individuals will develop CRC	Dental anomalies CHRPE Osteomas, soft tissue tumors, desmoid tumors
AFAP	Fewer colonic polyps than FAP (10-100s, with an average of 30) More proximally located polyps	Cancer occurs later than in FAP	Extracolonic manifestations are variable
GAPPS (associated with pathogenic variants in promoter 1B of the APC gene)	Gastric fundic gland polyposis and increased risk for gastric cancer Limited colonic involvement	Unknown	Unknown
MAP (biallelic pathogenic <i>MUTYH</i> variants)	10 to a few hundred colonic adenomatous polyps	Third decade or later	Unknown

Source: Jasperson, 2017¹; Nielsen, 2021²

Featured ARUP Testing

To compare directly to other hereditary cancer panels offered by ARUP Laboratories, see the ARUP Hereditary Cancer Panel Comparison table.

APC- and MUTYH-Associated Polyposis Panel, Sequencing and Deletion/Duplication 3004407

Method: Massively Parallel Sequencing

- Preferred diagnostic or predictive test for APCassociated polyposis conditions (FAP, AFAP, GAPPS, and MAP).
- Testing minors for adult-onset conditions is not recommended; testing will not be performed in minors without prior approval. For additional information, please contact an ARUP genetic counselor at 800-242-2787 ext. 2141.
- If a familial sequence variant has been previously identified, targeted sequencing for that variant may be appropriate; refer to the Laboratory Test Directory for additional information.

Genetics

Genes

APC (NM_000038, NM_001127511 Exon 1b only) and MUTYH (NM_001128425)

For more information, see the Genes Tested table

Penetrance

Classic FAP: 100% incidence of CRC in untreated individuals¹

MAP:

- 43-63% incidence of CRC by age 60^2
- 80-90% lifetime risk of CRC²

Etiology

FAP is estimated to account for 0.5% of CRC cases.1

MAP is estimated to account for 0.7% of all CRC cases.²

Prevalence

FAP: Approximately 1 in 6,850 to 1 in 31,250 individuals have FAP.¹

MAP: Approximately 1 in 20,000 to 1 in 60,000 individuals have MAP²; approximately 1% of White individuals are predicted to carry a single pathogenic *MUTYH* variant.²

Inheritance

APC is autosomal dominant.1

MUTYH is autosomal recessive.2

De Novo Variants

APC: 20-25% of individuals with FAP have a de novo pathogenic variant.3

• 20% of individuals with apparent de novo variants in APC have somatic mosaicism. 1

Test Description

See the Genes Tested table for genes included in the panel.

Methodology

This test is performed using the following sequence of steps:

- Selected genomic regions, primarily coding exons and exon-intron boundaries from the targeted genes are isolated from extracted genomic DNA
 using a probe-based hybrid capture enrichment workflow.
- Enriched DNA is sequenced by massively parallel sequencing (MPS; also known as NGS) followed by paired-end read alignment and variant calling
 using a custom bioinformatics pipeline.
- Sanger sequencing is performed as necessary to fill in regions of low coverage and, in certain situations, to confirm variant calls.
- The pipeline includes an algorithm for detection of large (single exon-level or larger) deletions and duplications.
- Large deletion/duplication calls made using MPS are confirmed by an orthogonal exon-level microarray when sample quality and technical conditions allow.

Clinical Sensitivity

Classic FAP: approximately 93%4

- ≤90% of APC pathogenic variants detected by sequencing¹
- Approximately 8-12% of APC pathogenic variants detected by deletion/duplication testing^{5,6}

Attenuated FAP: <30%7

GAPPS: unknown¹

MAP:

- Approximately 99% of pathogenic MUTYH variants detected by full gene sequencing²
- <1% of pathogenic MUTYH variants detected by deletion/duplication analysis²

Analytical Sensitivity

Variant Class	Analytical Sensitivity (PPA) Estimate ^a (%) and 95% Credibility Region (%)	Analytical Specificity (NPA) (%)
SNVs	>99 (96.9-99.4)	>99.9
Deletions 1-10 bp ^b	93.8 (84.3-98.2)	>99.9
Insertions 1-10 bp ^b	94.8 (86.8-98.5)	>99.9
Exon-level ^c Deletions	97.8 (90.3-99.8) [2 exons or larger] 62.5 (38.3-82.6) [single exon]	>99.9
Exon-level ^c Duplications	83.3 (56.4-96.4) [3 exons or larger]	>99.9

^aGenes included on this test are a subset of a larger methods-based validation from which the PPA values are derived. These values do not apply to testing performed by multiplex ligation-dependent probe amplification (MLPA).

 $bp, base\ pairs; NPA, negative\ percent\ agreement; PPA, positive\ percent\ agreement; SNVs, single\ nucleotide\ variants$

Testing Strategy

Contraindications for Ordering

- Should not be ordered to detect somatic variants associated with malignancy as sensitivity for mosaic variants is low with methodology used for germline assays
- Individuals with hematologic malignancy and/or a previous allogenic bone marrow transplant should not undergo molecular genetic testing on peripheral blood specimen.
 - Testing of cultured fibroblasts is required for accurate interpretation of test results.

Results

Result	Variant(s) Detected	Clinical Significance
Positive	Single pathogenic variant in APC gene	Predictive of FAP or other APC-associated polyposis condition
	Two pathogenic variants in <i>MUTYH</i> gene on opposite chromosomes	Predictive of MAP
	Single pathogenic MUTYH variant	Individual is a carrier of MAP and may be affected if another unidentified pathogenic MUTYH variant is present on the opposite chromosome

^bVariants greater than 10 bp may be detected, but the analytical sensitivity may be reduced.

^cIn most cases, a single exon deletion or duplication is less than 450 bp and 3 exons span a genomic region larger than 700 bp.

Result	Variant(s) Detected	Clinical Significance	
		Possible increased risk for cancer has been associated with a single pathogenic <i>MUTYH</i> variant, but is not well defined	
Negative	No pathogenic variants in either <i>APC</i> or <i>MUTYH</i> gene	Does not rule out FAP, other APC-associated polyposis conditions, or MAP	
Inconclusive	Variant of uncertain clinical significance detected	Uncertain	

Limitations

- A negative result does not exclude a diagnosis of FAP or MAP.
- Diagnostic errors can occur due to rare sequence variations.
- · Interpretation of this test result may be impacted if this patient has had an allogenic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of targeted genes
 - · Regulatory region and deep intronic variants
 - o Breakpoints of large deletions/duplications
- The following may not be detected:
 - · Deletions/duplications/insertions of any size by massively parallel sequencing
 - Large duplications less than 3 exons in size
 - · Noncoding transcripts
 - Some variants due to technical limitations in the presence of pseudogenes, repetitive, or homologous regions
 - · Low-level somatic variants

Genes Tested

To compare directly to other hereditary cancer panels offered by ARUP Laboratories, see the ARUP Hereditary Cancer Panel Comparison table.

Gene	MIM Number	Disorder/Associated Cancer(s)/Tumor(s)	Inheritance
APC	611731	FAP AFAP GAPPS Associated cancer(s)/tumor(s): colorectal adenomas and cancer, duodenal adenomas and cancer, fundic gland polyps, osteomas, thyroid, pancreas, and others	AD
МИТҮН	604933	Associated cancer(s)/tumor(s): breast, a colorectal a MAP Associated cancer(s)/tumor(s): colorectal adenomas and cancer, duodenal adenomas and cancer	AD AR

^aAssociation is suggested but not well-established at this time.

AD, autosomal dominant; AR, autosomal recessive

References

- 1. Jasperson KW, Patel SG, Ahnen DJ. APC-associated polyposis conditions. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews, University of Washington; 1993-2021. [Last Update: Feb 2017; Accessed: Aug 2021]
- 2. Nielsen M, Infante E, Brand R. MUTYH polyposis. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews: University of Washington; 1993-2021. [Updated: May 2021; Accessed: Aug 2021]
- 3. Bisgaard ML, Fenger K, Bülow S, et al. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat. 1994;3(2):121-125.
- 4. Lagarde A, Rouleau E, Ferrari A, et al. Germline APC mutation spectrum derived from 863 genomic variations identified through a 15-year medical genetics service to French patients with FAP. J Med Genet. 2010;47(10):721-722.
- 5. Aretz S, Stienen D, Uhlhaas S, et al. Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet.

2005;42(2):185-192.

- 6. Bunyan DJ, Eccles DM, Sillibourne J, et al. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. *Br J Cancer*. 2004;91(6):1155-1159.
- 7. Lefevre JH, Rodrigue CM, Mourra N, et al. Implication of MYH in colorectal polyposis. Ann Surg. 2006;244(6):874-880.

Additional Resources

Li J, Woods SL, Healey S, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. *Am J Hum Genet.* 2016;98(5):830-842.

Lubbe SJ, Di Bernardo MChiara, Chandler IP, et al. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol. 2009;27(24):3975-3980.

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: genetic/familial high-risk assessment—colorectal. Version 1.2021. [Updated: May 2021; Accessed: Nov 2021]

Related Information

Colorectal (Colon) Cancer Hereditary Gastrointestinal Cancer Panels

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com

Content Review November 2021 | Last Update June 2023

© 2023 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787