

Dihydropyrimidine Dehydrogenase (DPYD) and UPD Glucuronosyltransferase 1A1 (UGT1A1) Genotyping

Last Literature Review: September 2024 Last Update: September 2024

Dihydropyrimidine dehydrogenase, an enzyme encoded by the *DYPD* gene, is responsible for metabolizing 5-fluorouracil (5-FU), a chemotherapeutic drug frequently used to treat many types of cancer, including colorectal adenocarcinomas. Germline variants in *DPYD* affect enzyme production, which may result in dose-related toxicity or in a reduction of treatment effectiveness.¹ Similarly, variants in *UGT1A1* can cause a deficiency in the enzymes involved in metabolizing the chemotherapeutic drug irinotecan and therefore increase the risk of drug toxicity.²

Disease Overview

Genetics

Genes/Variants Tested

DPYD

- 1679T>G (DPYD*13, rs55886062)
- 1905+1G>A (DPYD*2A, rs3918290)
- 2846A>T (rs67376798)

UGT1A1

- UGT1A1*36, (TA)5
- UGT1A1*28, (TA)7
- UGT1A1*37, (TA)8
- UGT1A1*1, (TA)6

Inheritance

DPYD: autosomal codominant

UGT1A1: varies

Test Interpretation

Analytic Sensitivity/Specificity

DPYD: 99%

UGT1A1: 99%

Results

Gene	Result	Clinical Significance
DPYD	Positive: target variants of significance detected	Predicts decreased DPD enzymatic activity Associated with an increased risk for grade 3-4 5-FU toxicity
	Negative: *1/*1 detected	Predicts normal metabolizer phenotype and average risk for 5-FU toxicity

Featured ARUP Testing

Dihydropyrimidine Dehydrogenase (DPYD) and UPD Glucuronosyltransferase 1A1 (UGT1A1) Genotyping 3017866

Method: Polymerase Chain Reaction (PCR)/Fluorescence Monitoring/Fragment Analysis

Predicts risk of dose-related toxicity to 5-FU therapy. May be useful in dosage planning for individuals who will receive high-dose irinotecan, have personal or family history of sensitivity to irinotecan, or have experienced neutropenia while receiving irinotecan.

For more information about individual *DPYD* testing, refer to the Dihydropyrimidine Dehydrogenase (DPYD), 3 Variants Test Fact Sheet.

For more information about individual *UGT1A1* testing, refer to the UGT1A1 Gene Analysis Test Fact

Gene	Result	Clinical Significance
UGT1A1	Positive: target variants of significance detected	Associated with an increased risk of irinotecan toxicity
	Negative: *1, (TA)6 detected	Associated with normal UGT1A1 enzyme levels and average risk of irinotecan toxicity

Limitations

Dihydropyrimidine Dehydrogenase (DPYD)

- Only targeted variants in the DPYD gene will be detected.
- Diagnostic errors may occur due to rare sequence variations.
- · Genetic and/or nongenetic factors not detected by this test may affect 5-FU drug metabolism and efficacy and the risk for toxicity.
- Genotyping does not replace the need for therapeutic drug monitoring or clinical observation.
- A negative result for the targeted DPYD variants does not rule out risk for 5-FU toxicity or predict degree of responsiveness to 5-FU.

UDP Glucuronosyltransferase 1A1 (*UGT1A1*)

- Only targeted variations in the *UGT1A1* gene will be detected.
- Diagnostic errors can occur due to rare sequence variations.
- The clinical significance of the rare *36, (TA)5 and *37, (TA)8 alleles in predicting irinotecan toxicity is not well established.
- Genetic and nongenetic factors other than *UGT1A1* may contribute to irinotecan toxicity and efficacy, and risk for bilirubin-related discontinuation of atazanavir.

References

- 1. Dean L, Kane M. Fluorouracil therapy and DPYD genotype. In: Pratt VM, Scott SA, Pirmohamed M, et al, eds. *Medical Genetics Summaries*. Bethesda, Maryland. Updated Jan 2021; accessed Aug 2024.
- 2. Dean L. Irinotecan therapy and UGT1A1 genotype. In: Pratt VM, Scott SA, Pirmohamed M, et al, eds. *Medical Genetics Summaries*. Bethesda, Maryland. Updated Apr 2018; accessed Aug 2024.

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com

© 2024 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787