

Client: Example Client ABC123 123 Test Drive Salt Lake City, UT 84108 UNITED STATES

Physician: Doctor, Example

Patient: Patient, Example

8/22/1960
Male
01234567890ABCD, 012345
01234567890ABCD
00/00/0000 00:00

Hereditary Gastrointestinal Cancer Panel, Sequencing and Deletion/Duplication ARUP test code 2013449

Gastrointestinal Cancer Panel - Spcmn Whole Blood **Gastrointestinal Cancer Panel - Interp** Negative RESULT No pathogenic variants were detected in any of the genes tested. INTERPRETATION No pathogenic variants were detected in any of the genes tested. This result decreases the likelihood of, but does not exclude, a hereditary cause of gastrointestinal cancer or other cancer. Please refer to the background information included in this report for a list of the genes analyzed, methodology, and limitations of this test. RECOMMENDATIONS Medical screening and management should rely on clinical findings and family history. If this individual has a family history, determination of a causative familial variant in an affected family member is necessary for optimal interpretation of this negative result. Further testing may be warranted if there is a familial variant that is not detectable by this assay. Genetic consultation is recommended. COMMENTS Likely benign and benign variants are not reported. Variants in the following region(s) may not be detected by NGS with sufficient confidence in this sample due to technical limitations: None This result has been reviewed and approved by BACKGROUND INFORMATION: Hereditary Gastrointestinal Cancer Panel, Sequencing and Deletion/ Duplication Duplication CHARACTERISTICS: Pathogenic germline variants in multiple genes have been implicated in hereditary gastrointestinal (GI) cancer. Hereditary cancer predisposition is often characterized by early age of onset (typically before age 50) and multiple, multifocal, and/or similar cancers in a single individual or in closely related family member(s). Pathogenic variants in the genes analyzed by this panel cause variable phenotypes and cancer risks, including non-GI cancers. Lynch syndrome (LS), the most common hereditary predisposition to colorectal cancer, is caused by pathogenic variants in the MLH1, MSH2, MSH6, PMS2, and EPCAM genes. aenes. EPIDEMIOLOGY: Greater than 2-4 percent of colorectal cancers are associated with a hereditary cause. Prevalence of LS in the general population has been estimated at 1 in 279 individuals.

H=High, L=Low, *=Abnormal, C=Critical

Unless otherwise indicated, testing performed at:

CAUSE: Pathogenic germline variants in genes associated with hereditary GI cancer

INHERITANCE: Autosomal dominant, except for: SDHD, which is autosomal dominant with parent-of-origin effect; MLH3, MSH3, and NTHL1, which are autosomal recessive; and MUTYH, which is autosomal recessive but may also have autosomal dominant risks that are not well-defined. Additionally, some genes are also associated with autosomal recessive childhood cancer predisposition or other syndromes.

GENES TESTED: APC*; AXIN2; BMPR1A*; CDH1*; CHEK2*; EPCAM**; KIT; MLH1; MLH3*; MSH2; MSH3; MSH6; MUTYH; NTHL1; PDGFRA*; PMS2; POLD1; POLE; PTEN*; SDHA*; SDHB; SDHC*; SDHD*; SMAD4; STK11; TP53

* - One or more exons are not covered by sequencing and/or deletion/duplication analysis for the indicated gene; see limitations section below.

** - Deletion/duplication analysis of EPCAM (NM_002354) exon 9 only, sequencing is not available for this gene.

METHODOLOGY: Probe hybridization-based capture of all coding exons and exon-intron junctions of the targeted genes (including selected PTEN promoter variants), followed by massively parallel sequencing. Sanger sequencing was performed as necessary to fill in regions of low coverage and to confirm reported variants that do not meet acceptable quality metrics. A proprietary bioinformatic algorithm was used to detect large (single exon-level or larger) deletions or duplications in the indicated genes. Large deletions/duplications confirmed using an orthogonal exon-level microarray. Human genome build 19 (Hg 19) was used for data analysis. Testing of selected exons (and exon/intron boundaries) of PMS2, PTEN and MSH2 was performed by bidirectional Sanger sequencing. Deletion/duplication testing of PMS2 was performed by multiplex ligation-dependent probe amplification (MLPA).

ANALYTICAL SENSITIVITY: The analytical sensitivity is approximately 99 percent for single nucleotide variants (SNVS) and greater than 93 percent for insertions/duplications/deletions (indels) from 1-10 base pairs in size. Indels greater than 10 base pairs may be detected, but the analytical sensitivity may be reduced. Deletions of 2 exons or larger are detected with sensitivity greater than 97 percent; single exon deletions are detected with 62 percent sensitivity. Duplications of 3 exons or larger are detected at greater than 83 percent sensitivity. Specificity is greater than 99.9 percent for all variant classes. The analytical sensitivity for MLPA is greater than 99 percent.

LIMITATIONS: A negative result does not exclude a heritable form of cancer. This test only detects variants within the coding regions and intron-exon boundaries of the targeted genes. Deletions/duplications/insertions of any size may not be detected by massively parallel sequencing. Regulatory region variants and deep intronic variants will not be identified. Precise breakpoints for large deletions or duplications are not determined in this assay and single exon deletions/duplications may not be detected based on the breakpoints of the rearrangement. The actual breakpoints for the deletion or duplication may extend beyond or be within the exon(s) reported. This test is not intended to detect duplications of 2 or fewer exons in size, though these may be identified. Single exon deletions are reported but called at a lower sensitivity. Diagnostic errors can occur due to rare sequence variations. In some cases, variants may not be identified due to technical limitations caused by the presence of pseudogenes, repetitive, or homologous regions. This test is not intended to detect low-level mosaic or somatic variants, gene conversion events, complex inversions, translocations, mitochondrial DNA (mtDNA)

H=High, L=Low, *=Abnormal, C=Critical

Inless otherwise indicated, testing performed at:

ARUP LABORATORIES | 800-522-2787 | aruptab.com 500 Chipeta Way, Salt Lake City, UT 84108-1221 Jonathan R. Genzen, MD, PhD, Laboratory Director Patient: Patient, Example ARUP Accession: 24-108-400546 Patient Identifiers: 01234567890ABCD, 012345 Visit Number (FIN): 01234567890ABCD Page 2 of 3 | Printed: 5/3/2024 4:10:08 PM 4848

variants, or repeat expansions. Interpretation of this test result may be impacted if this patient has had an allogeneic stem cell transplantation. Non-coding transcripts were not analyzed.

The following regions are not sequenced due to technical limitations of the assay: APC (NM_001354896) exon 12 APC (NM_001354898, NM_001354904) exon 2 APC (NM_001354900) exon 11 CHEK2 (NM_001354900) exon 11 CHEK2 (NM_001347827) exon 3 CHEK2 (NM_001347827) exon 17 PDGFRA (NM_001347828) exon 2 PDGFRA (NM_001347828) exon 1 SDHA (NM_001347830) exon 1 SDHA (NM_001294332) exon 13 SDHA (NM_001330758) exon 12 SDHC (NM_001035511) partial exon 5 (Chr1:161332225-161332330) SDHC (NM_001278172) partial exon 4 (Chr1:161332225-161332330) SDHD (NM_001276506) exon 4

Deletions/duplications will not be called for the following exons:

exons: APC (NM_001354896) 12; APC (NM_001354898, NM_001354904) 2; APC (NM_001354900) 11; BMPR1A (NM_004329) 12-13; CDH1 (NM_001317185) 10; CHEK2 (NM_007194) 11-15; CHEK2 (NM_001005735) 3,12-16; CHEK2 (NM_001257387) 12-16; CHEK2 (NM_001349956) 4,10-14; CHEK2 (NM_145862) 10-14; MLH3 (NM_001040108) 7-8; MLH3 (NM_014381) 7; PDGFRA (NM_001347827) 17; PDGFRA (NM_001347828) 2; PDGFRA (NM_001347830) 1; PTEN (NM_000314, NM_00134718) 9; PTEN (NM_001304717) 1,10; SDHA (NM_004168) 1,10-15; SDHA (NM_001294332) 1,9-14; SDHA (NM_001330758) 1,10-13; SDHD (NM_001276506) 4

This test was developed and its performance characteristics determined by ARUP Laboratories. It has not been cleared or approved by the US Food and Drug Administration. This test was performed in a CLIA certified laboratory and is intended for clinical purposes.

Counseling and informed consent are recommended for genetic testing. Consent forms are available online.

VERIFIED/REPORTED DATES					
Procedure	Accession	Collected	Received	Verified/Reported	
Gastrointestinal Cancer Panel - Spcmn	24-108-400546	00/00/0000 00:00	00/00/0000 00:00	00/00/0000 00:00	
Gastrointestinal Cancer Panel - Interp	24-108-400546	00/00/0000 00:00	00/00/0000 00:00	00/00/0000 00:00	

END OF CHART

H=High, L=Low, *=Abnormal, C=Critical

Unless otherwise indicated, testing performed at:

ARUP LABORATORIES | 800-522-2787 | aruptab.com 500 Chipeta Way, Sait Lake City, UT 84108-1221 Jonathan R. Genzen, MD, PhD, Laboratory Director