Coxiella burnetii (Q-Fever) Antibodies, IgG and IgM, Phase I and II with Reflex to Titer

ARUP test code 2012634

C. Burnetii Abs, IgG Phase I Screen

Interpretive Information: C. Burnetii Abs, IgG Phase I Screen

Acute Q fever is best demonstrated by a four-fold rise in phase II IgG titers when comparing two serum samples collected 3-6 weeks apart, and testing is performed in the same laboratory at the same time. Phase I IgG titers can increase during seroconversion. However, in the case of acute infection, the phase I titer should remain lower than the phase II titer. IgM antibodies to phase II antigens provide ancillary information to IgG titers. Phase II IgM titers develop in the same time period of phase II IgG titers and can persist for over a year. A single phase II IgM positive result on an acute sample represents an early conversion or a false positive; testing of a convalescent serum is necessary. In the absence of an acute sample, a single convalescent serum sample with a phase II IgG titer greater than 1:128 in a patient who has been ill longer than 1 week indicates probable acute Q fever.

Chronic Q fever is best demonstrated by a phase I titer greater than the phase II IgG titer. Phase I IgM antibodies may also develop concurrently with phase I IgG antibodies. However, in the absence of a phase I IgG titer, the diagnostic value of a phase I IgM titer is limited. Phase I and phase II IgM and IgG titers may remain elevated for months or years after acute infection or during convalescence.

Coxiella burnetii (Q-Fever) Antibody IgG, Phase I is negative. No further testing will be performed.

C. Burnetii Abs, IgG Phase II Screen

Negative

(Ref Interval: Negative)

H=High, L=Low, *=Abnormal, C=Critical
C. burnetii (Q-Fever) Ab, Phase I IgM
Negative
(Ref Interval: Negative)

Coxiella burnetii (Q-Fever) Antibody IgM, Phase I is negative. No further testing will be performed.

C. burnetii (Q-Fever) Ab, Phase II IgM
Negative
(Ref Interval: Negative)

Coxiella burnetii (Q-Fever) Antibody IgM, Phase II is negative. No further testing will be performed.

Acute Q fever is best demonstrated by a four-fold rise in phase II IgG titers when comparing two serum samples collected 3-6 weeks apart, and testing is performed in the same laboratory at the same time. Phase I IgG titers can increase during seroconversion. However, in the case of acute infection, the phase I titer should remain lower than the phase II titer. IgM antibodies to phase II antigens provide ancillary information to IgG titers. Phase II IgM titers develop in the same time period of phase II IgG titers and can persist for over a year. A single phase II IgM positive result on an acute sample represents an early conversion or a false positive; testing of a convalescent serum is necessary. In the absence of an acute sample, a single convalescent serum sample with a phase II IgG titer greater than 1:128 in a patient who has been ill longer than 1 week indicates probable acute Q fever.

Chronic Q fever is best demonstrated by a phase I titer greater than the phase II IgG titer. Phase I IgM antibodies may also develop concurrently with phase I IgG antibodies. However, in the absence of a phase I IgG titer, the diagnostic value of a phase I IgM titer is limited. Phase I and phase II IgM and IgG titers may remain elevated for months or years after acute infection or during convalescence.

Coxiella burnetii (Q-Fever) Antibody IgG, Phase II is negative. No further testing will be performed.

Coxiella burnetii (Q-Fever) Antibody IgM, Phase I is negative. No further testing will be performed.

Coxiella burnetii (Q-Fever) Antibody IgM, Phase II is negative. No further testing will be performed.
Coxiella burnetii (Q-Fever) Antibody IgM, Phase II is negative. No further testing will be performed.

INTERPRETIVE INFORMATION: C. burnetii (Q-Fever) Ab, Phase II IgM

Acute Q fever is best demonstrated by a four-fold rise in phase II IgG titers when comparing two serum samples collected 3-6 weeks apart, and testing is performed in the same laboratory at the same time. Phase I IgG titers can increase during seroconversion. However, in the case of acute infection, the phase I titer should remain lower than the phase II titer. IgM antibodies to phase II antigens provide ancillary information to IgG titers. Phase II IgM titers develop in the same time period of phase II IgG titers and can persist for over a year. A single phase II IgM positive result on an acute sample represents an early conversion or a false positive; testing of a convalescent serum is necessary. In the absence of an acute sample, a single convalescent serum sample with a phase II IgG titer greater than 1:128 in a patient who has been ill longer than 1 week indicates probable acute Q fever.

Chronic Q fever is best demonstrated by a phase I titer greater than the phase II IgG titer. Phase I IgM antibodies may also develop concurrently with phase I IgG antibodies. However, in the absence of a phase I IgG titer, the diagnostic value of a phase I IgM titer is limited. Phase I and phase II IgM and IgG titers may remain elevated for months or years after acute infection or during convalescence.