

# NRAS Mutation Detection, Pyrosequencing

Content Review: March 2021 Last Update: December 2023

Metastatic melanoma is associated with a poor prognosis and poor response to traditional chemotherapy or radiation therapy, <sup>1</sup> as is metastatic CRC.<sup>2</sup> Targeted therapy may play a role in treatment of disseminated disease. Genetic variants guide utilization of targeted therapy for melanoma (*BRAF*, *NRAS*, *KIT*)<sup>3</sup> and CRC (*BRAF*, *KRAS*, *NRAS*). *NRAS* mutation detection screens for individuals with melanoma who may respond to therapy targeted at downstream genes in the MAPK signaling pathway<sup>3</sup> and screens for individuals with CRC who may show relative resistance to anti-EGFR therapies.<sup>2</sup> (For more information, see the Colorectal Cancer - Predictive Testing for Anti-EGFR Therapy Test Fact Sheet).

## Genetics

#### Gene

NRAS

## Structure/Function

GTPase-encoding gene in the RAS/RAF/MAPK pathway

#### Mutations

- Majority of activating mutations are in exon 2 (codons 12 and 13) and exon 3 (codon 61).<sup>4</sup>
- NRAS, KRAS, and BRAF mutations are mutually exclusive in individuals with CRC.<sup>5</sup>
- NRAS mutations rarely overlap with BRAF and KIT mutations in melanoma.<sup>3</sup>
- Guidelines suggest extended RAS testing in CRC, which includes codons 12, 13, 59, 61, 117, and 146.<sup>2</sup>

# **Test Interpretation**

## Sensitivity/Specificity

Clinical Sensitivity

Activating NRAS mutations are found in 20% of metastatic melanomas<sup>6</sup> and approximately 3% of CRCs.

Analytic Sensitivity/Specificity

100%

#### Results

| Result   | Variant(s) Detected                        | Interpretation                                                                                                                                                                                          |
|----------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive | Oncogenic <i>NRAS</i> mutation detected    | Predictive of relative resistance to anti-EGFR therapy in $\rm CRC^2$<br>Possibly predictive of response to therapy targeted at downstream genes in the MAPK signaling pathway in melanoma <sup>3</sup> |
| Negative | No oncogenic <i>NRAS</i> mutation detected | n/a                                                                                                                                                                                                     |

## Featured ARUP Testing

# NRAS Mutation Detection by Pyrosequencing 2003123

**Method:** Polymerase Chain Reaction/Pyrosequencing

- Use to detect activating NRAS mutations (codons 12, 13, 61) associated with relative resistance to anti-EGFR therapy in colorectal cancer (CRC).
- Use to predict response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, melanoma and CRC).

### Limitations

- · Limit of detection: 10% mutant alleles
- Does not cover extended RAS; oncogenic mutations outside of codons 12, 13, and 61 will not be detected.
- Presence or absence of mutations does not guarantee a response or lack of response to anti-EGFR therapies or therapies targeted at downstream genes in the MAPK signaling pathway.

#### References

- 1. Domingues B, Lopes JM, Soares P, et al. Melanoma treatment in review. Immunotargets Ther. 2018;7:35-49.
- 2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Colon cancer. Version 2.2021. [Updated: Jan 2021; Accessed: Feb 2021]
- 3. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Melanoma—cutaneous. Version 1.2020. [Last update: Jan 2021; Accessed: Feb 2021]
- 4. Heppt MV, Siepmann T, Engel J, et al. Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. *BMC Cancer*. 2017;17(1):536.
- 5. Nagakubo Y, Hirotsu Y, Amemiya K, et al. Accurate detection of KRAS, NRAS and BRAF mutations in metastatic colorectal cancers by bridged nucleic acid-clamp real-time PCR. BMC Med Genomics. 2019;12(1):162.
- 6. Dummer R, Schadendorf D, Ascierto PA, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. 2017;18(4):435-445.

## **Related Information**

Melanoma Colorectal (Colon) Cancer Colorectal Cancer - Predictive Testing for Anti-EGFR Therapy

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com

© 2023 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787