Kabuki Syndrome (KMT2D) Sequencing

Indications for Ordering
Confirm diagnosis of Kabuki syndrome (KS)

Test Description
Bidirectional sequencing of KMT2D coding regions and intron/exon boundaries

Tests to Consider
Primary test
Kabuki Syndrome (KMT2D) Sequencing 2009306
- Detects most pathogenic variants

Related tests
Familial Mutation, Targeted Sequencing 2001961
- Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

Prevalence
- Japanese population – 1/32,000
- New Zealand and Australian populations – 1/86,000
- KS has been reported in almost all ethnic groups
 - Prevalence in other ethnic groups is likely similar to that of the Japanese population

Symptoms
- Distinctive facial appearance, most prominent in early childhood
 - Arched eyebrows with sparse lateral third, long palpebral fissures with eversion of the lower eyelid
 - Blue sclerae
 - Flat nasal tip
 - Large dysplastic ears
 - Long dense eyelashes
 - Thin upper lip and full lower lip
- Abnormal dentition
- Attenuation and/or absence of the distal interphalangeal flexion crease
 - Brachydactyly
- Cryptorchidism
- Dermatoglyphic pattern abnormalities
- Developmental delay
- Early breast development in infant girls
- Feeding difficulties
- Gastroesophageal reflux
- Hearing loss
- Hypospadias

Genetics

Gene – KMT2D (previously known as MLL2)
- Most common cause of KS

Inheritance – autosomal dominant

Pathogenic variants
- De novo variants
 - Up to 80% of all identified KMT2D pathogenic variants
- Mosaicism
 - Low-level KMT2D gene mosaic pathogenic variants may occur
- Large deletions/duplications
 - Up to ~5% of all identified KMT2D pathogenic variants (Banka, 2012)
 - Will not be detected by KMT2D sequencing
- Up to 10% of individuals with KS and negative KMT2D testing have pathogenic variants in the KDM6A gene (Lederer, 2012; Miyake, 2013)
 - Will not be detected by KMT2D sequencing

Test Interpretation

Sensitivity/specificity
- Clinical sensitivity – ~70% (Banka, 2012; Hannibal, 2011)
- Analytical sensitivity/specificity – 99%

Results
- Positive – one pathogenic variant detected in KMT2D gene
 - Confirms diagnosis and etiology
- Negative – no pathogenic variant detected in KMT2D gene
 - A diagnosis of KS is less likely but not excluded
- Uncertain – variants of unknown clinical significance may be identified
Limitations

- Deep intronic pathogenic variants and some regulatory region variants will not be detected
- Large deletions/duplications will not be detected
- KDM6A pathogenic variants or variants in other yet undiscovered genes associated with KS will not be detected
- Germline or somatic mosaicism will not be detected
- Diagnostic errors can occur due to rare sequence variations

References