Hereditary Hemolytic Anemia Panel, Sequencing

Indications for Ordering

Determine etiology, elicit inheritance pattern, and assess recurrence risk in individuals with
- Unexplained hemolytic anemia
- Unexplained hyperbilirubinemia in neonates
- Family history of unexplained hemolytic anemia
- Pregnancy with hydrops fetalis of unknown etiology

Test Description

- Targeted capture of all coding regions and intron/exon boundaries followed by massively parallel sequencing
- Sanger sequencing
 - Provides data for bases with insufficient coverage by massively parallel sequencing

Tests to Consider

Typical testing strategy

See ARUP Consult’s [Hemolytic Anemias Testing algorithm](#)

Primary test

[Hereditary Hemolytic Anemia Panel Sequencing 2012052](#)
- Confirm etiology of hemolytic anemia in individuals with hemolysis or a family history of hemolytic anemia

Related tests

- **Osmotic Fragility, Erythrocyte 2002257**
 - Functional testing of red blood cell (RBC) sensitivity to osmotic stress
 - Do not use to distinguish between spherocytes in hereditary spherocytosis and acquired autoimmune hemolytic anemia

- **RBC Band 3 Protein Reduction in Hereditary Spherocytosis 2008460**
 - Use to confirm diagnosis of hereditary spherocytosis when hemolytic anemia and spherocytes are present

- **Glucose-6-Phosphate Dehydrogenase (G6PD) 2 Mutations 0051684**
 - Preferred genetic test for individuals of African descent
 - Detects the single most common pathogenic G6PD variant (A- allele) in individuals of African descent

- **Pyruvate Kinase 0080290**
 - Preferred initial test to screen for pyruvate kinase deficiency

- **Hemoglobin Evaluation Reflexive Cascade 2005792**
 - Optimal test for the initial and confirmatory diagnosis of any suspected hemoglobinopathy

Disease Overview

Prevalence

Hereditary hemolytic anemia (HHA) disorders – 1/500-1,100

Symptoms

Highly variable clinical presentation
- Anemia
- Fatigue
- Gallstones
- Hyperbilirubinemia/jaundice
- Pallor
- Scleral icterus
- Splenomegaly

Physiology

HHA encompasses a diverse group of heterogeneous disorders
- Characterized by premature RBC destruction and anemia due to intrinsic RBC defects

RBC membrane disorders
- RBC membrane weakens, resulting in irregular shape, increased fragility, and hemolysis
- Most common types of RBC membrane disorders
 - Hereditary spherocytosis
 - Hereditary elliptocytosis or pyropoikilocytosis
 - Dehydrated hereditary stomatocytosis (xerocytosis)
Hereditary spherocytosis (HS)
• Inheritance
 o ~75% autosomal dominant
 o ~25% autosomal recessive or de novo
• Most common RBC membrane disorder
 o 1/2,000 northern Europeans
• Characterized by spherically shaped RBCs with decreased deformability
• RBC membrane proteins
 o Ankyrin
 o Band 3
 o α-spectrin
 o β-spectrin
 o Protein 4.2

Hereditary elliptocytosis or pyropoikilocytosis (HE/HPP)
• Inheritance
 o HE – autosomal dominant
 o HPP – autosomal recessive
• Prevalence of HE – 1/2,000-4,000 worldwide
 o Higher in individuals of African or Mediterranean descent
• Characterized by elliptically shaped RBCs on peripheral blood smear
• Defects in RBC membrane proteins α- and β-spectrin and less commonly protein 4.1
• Patients with HE are generally asymptomatic
• 10% have moderate to severe anemia

Dehydrated hereditary stomatocytosis (xerocytosis)
• Inheritance
 o Autosomal dominant
• Characterized by
 o Decreased intracellular potassium content
 o Loss of cell water
 o Increased cytoplasmic viscosity
 o Increased mean cell hemoglobin concentration
 o PIEZO1 is most commonly involved gene

RBC enzymopathies
• Inheritance
 o Most disorders are autosomal recessive
 o X-linked forms
 ▪ G6PD deficiency
 ▪ Phosphoglycerate kinase 1 (PGK1) deficiency
• Deficiencies of enzymes involved with
 o Glycolysis
 o Hexose monophosphate shunt
 o Glutathione metabolism
 o Nucleotide metabolism

• >20 disorders recognized
 o Common RBC enzymopathies
 ▪ G6PD deficiency
 ▪ Pyruvate kinase deficiency
 o Usually associated with normocytic normochromic hemolytic anemia with no specific abnormalities of RBC morphology
 o Severity of hemolysis is variable
 ▪ May be a result of an external stressor (eg, infection, administration of drugs, or ingestion of some foods)
 o Nonhematological manifestations possible (eg, myopathy, neurological dysfunction, intellectual disability)
 o Diagnosis based on detection of reduced specific enzyme activity and/or molecular testing to identify causative variant(s)

Hemoglobinopathies
• Quantitative defect in biosynthesis of one type of hemoglobin (Hb) chain or a structurally abnormal Hb
 o Alpha or beta thalassemia
 ▪ Quantitative defect in the synthesis of either the alpha- or beta-globin chain
 ▪ Unpaired subunits precipitate, bind to the RBC membrane, and lead to hemolysis
 o Structural Hb variants
 ▪ Result from a structurally abnormal Hb that may polymerize, precipitate, or crystalize within the RBC
 ▪ Leads to membrane changes and hemolysis
 ▪ Sickle cell diseases
 ▪ Unstable Hb variants

Diagnostic issues
Molecular testing for hemolytic anemia is indicated when initial test results do not explain
• Clinical outcome
• Mode of inheritance

Treatment issues
Splenectomy should be avoided in patients with some forms of hereditary stomatocytosis
• May predispose patient to life-threatening thrombotic events

Genetics

Genes tested – see table

Test Interpretation

Clinical sensitivity – unknown
Results

- Positive
 - One or more pathogenic variants detected
 - Autosomal dominant genes
 - One pathogenic variant predicts an HHA disorder
 - Autosomal recessive genes
 - One pathogenic variant predicts carrier status for an HHA disorder
 - Two pathogenic variants on opposite chromosomes predict an HHA disorder
 - X-linked genes
 - In females, one pathogenic variant predicts carrier status
 - In males, one pathogenic variant predicts an HHA disorder
- Negative
 - No pathogenic variants associated with an HHA disorder identified
 - Does not exclude a diagnosis of HHA
- Inconclusive
 - Variants of unknown clinical significance identified

Limitations

- Not detected
 - Variants in genes not tested
 - Alpha- and beta-globin genes are not analyzed due to high level of gene homology and frequency of large deletions
 - Large exonic deletions/duplications
 - Deep intronic or regulatory region variants
 - Small deletions or insertions may not be detected
 - Diagnostic errors can occur due to rare sequence variation
 - Presence of a highly homologous pseudogene may interfere with variant detection in PGK1

References

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>NM #</th>
<th>OMIM #</th>
<th>Inh.</th>
<th>Associated Disorders</th>
<th>Other Associated Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Adenosine deaminase</td>
<td>000022</td>
<td>102730</td>
<td>AD</td>
<td>Elevated adenosine deaminase</td>
<td></td>
</tr>
<tr>
<td>AK1</td>
<td>Adenylate kinase 1</td>
<td>004076</td>
<td>103000</td>
<td>AR</td>
<td>Adenylate kinase deficiency</td>
<td></td>
</tr>
<tr>
<td>ALDOA</td>
<td>Aldolase A</td>
<td>000034</td>
<td>103850</td>
<td>AR</td>
<td>ALDOA deficiency (glycogen storage disease XII)</td>
<td>Exertional myopathy, muscle weakness</td>
</tr>
<tr>
<td>ANK1</td>
<td>Ankyrin 1</td>
<td>000037</td>
<td>607008</td>
<td>AD/AR</td>
<td>Spherocytosis type 1</td>
<td></td>
</tr>
<tr>
<td>CYB5R3</td>
<td>Cytochrome b5 reductase 3 (DIA1)</td>
<td>000398</td>
<td>613213</td>
<td>AR</td>
<td>Methemoglobinemia type I</td>
<td>Hypoxia, cyanosis hypoxia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methemoglobinemia type II</td>
</tr>
<tr>
<td>EPB41</td>
<td>Erythrocyte membrane protein band 4.1</td>
<td>004437</td>
<td>130500</td>
<td>AD/AR</td>
<td>Elliptocytosis 1, pyropoikilocytosis</td>
<td></td>
</tr>
<tr>
<td>EPB42</td>
<td>Erythrocyte membrane protein band 4.2</td>
<td>000119</td>
<td>177070</td>
<td>AR</td>
<td>Spherocytosis type 5</td>
<td></td>
</tr>
<tr>
<td>G6PD</td>
<td>Glucose-6-phosphate dehydrogenase</td>
<td>001042351</td>
<td>305900</td>
<td>XL</td>
<td>Glucose-6-phosphate dehydrogenase deficiency</td>
<td></td>
</tr>
<tr>
<td>GCLC</td>
<td>Glutamate-cysteine ligase, catalytic subunit</td>
<td>001498</td>
<td>606857</td>
<td>AR</td>
<td>Glutamate-cysteine ligase deficiency</td>
<td></td>
</tr>
<tr>
<td>GPI</td>
<td>Glucose phosphate isomerase</td>
<td>000175</td>
<td>172400</td>
<td>AR</td>
<td>Glucose phosphate isomerase deficiency With or without neurologic deficits</td>
<td></td>
</tr>
<tr>
<td>GSR</td>
<td>Glutathione reductase</td>
<td>000637</td>
<td>138300</td>
<td>AR</td>
<td>Glutathione reductase deficiency</td>
<td></td>
</tr>
<tr>
<td>GSS</td>
<td>Glutathione synthetase</td>
<td>000178</td>
<td>601002</td>
<td>AR</td>
<td>Glutathione synthetase deficiency 5-oxoprolinuria, metabolic acidosis, neurological dysfunction</td>
<td></td>
</tr>
<tr>
<td>HK1</td>
<td>Hexokinase 1</td>
<td>000188</td>
<td>142600</td>
<td>AR</td>
<td>Hexokinase deficiency</td>
<td></td>
</tr>
<tr>
<td>NT5C3A</td>
<td>5’ nucleotidase, cytosolic IIIA</td>
<td>016489</td>
<td>606224</td>
<td>AR</td>
<td>Pyrimidine 5’ nucleotidase deficiency (UMPH1 deficiency)</td>
<td></td>
</tr>
<tr>
<td>PFKL</td>
<td>Phosphofructokinase, liver</td>
<td>002626</td>
<td>171860</td>
<td>AR</td>
<td>Phosphofructokinase deficiency</td>
<td></td>
</tr>
<tr>
<td>PFKM</td>
<td>Phosphofructokinase, muscle</td>
<td>000289</td>
<td>610681</td>
<td>AR</td>
<td>Muscle phosphofructokinase deficiency (glycogen storage disease VII)</td>
<td>Exertional myopathy</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Description</td>
<td>NM #</td>
<td>OMIM #</td>
<td>Inh.</td>
<td>Associated Disorders</td>
<td>Other Associated Symptoms</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PGK1</td>
<td>Phosphoglycerate kinase 1</td>
<td>000291</td>
<td>311800</td>
<td>XL</td>
<td>Phosphoglycerate kinase deficiency</td>
<td>Myopathy, neurological dysfunction</td>
</tr>
<tr>
<td>PIEZO1</td>
<td>Piezo-type mechanosensitive ion channel component 1</td>
<td>001142864</td>
<td>611184</td>
<td>AD</td>
<td>Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or perinatal edema (hereditary xerocytosis)</td>
<td></td>
</tr>
<tr>
<td>PKLR</td>
<td>Pyruvate kinase (liver and red blood cell)</td>
<td>000298</td>
<td>609712</td>
<td>AR</td>
<td>Pyruvate kinase deficiency</td>
<td></td>
</tr>
<tr>
<td>SLC4A1</td>
<td>Solute carrier family 4, anion exchanger, member 1 (erythrocyte membrane protein band 3, AE1)</td>
<td>000342</td>
<td>109270</td>
<td>AD/AR</td>
<td>Spherocytosis type 4, elliptocytosis type 4, stomatocytosis, acanthocytosis, distal renal tubular acidosis with hemolytic anemia</td>
<td></td>
</tr>
<tr>
<td>SLCO1B1</td>
<td>Solute carrier organic anion transporter family, member 1B1</td>
<td>006446</td>
<td>604843</td>
<td>AR (digenic)</td>
<td>Rotor type hyperbilirubinemia</td>
<td></td>
</tr>
<tr>
<td>SLCO1B3</td>
<td>Solute carrier organic anion transporter family, member 1B3</td>
<td>019844</td>
<td>605495</td>
<td>AR (digenic)</td>
<td>Rotor type hyperbilirubinemia</td>
<td></td>
</tr>
<tr>
<td>SPTA1</td>
<td>Spectrin alpha</td>
<td>003126</td>
<td>182860</td>
<td>AD/AR</td>
<td>Elliptocytosis 2, spherocytosis type 3, pyropoikilocytosis, elliptopoiokilocytosis</td>
<td></td>
</tr>
<tr>
<td>SPTB</td>
<td>Spectrin beta</td>
<td>00347</td>
<td>182870</td>
<td>AD/AR</td>
<td>Elliptocytosis 3, spherocytosis type 2, neonatal hemolytic anemia</td>
<td></td>
</tr>
<tr>
<td>TPI1</td>
<td>Triosephosphate isomerase 1</td>
<td>000365</td>
<td>190450</td>
<td>AR</td>
<td>Triosephosphate isomerase deficiency</td>
<td>Myopathy</td>
</tr>
<tr>
<td>UGT1A1</td>
<td>UDP glycosyltransferase 1 family, polypeptide A1</td>
<td>000463</td>
<td>191740</td>
<td>AR</td>
<td>Crigler-Najjar syndrome type I</td>
<td>Kernicterus, neurologic dysfunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crigler-Najjar syndrome type II, hyperbilirubinemia (unconjugated), Gilbert syndrome</td>
<td></td>
</tr>
<tr>
<td>UGT1A6</td>
<td>UDP glycosyltransferase 1 family, polypeptide A6</td>
<td>001072</td>
<td>606431</td>
<td>AR</td>
<td>UGT1A6 deficiency</td>
<td></td>
</tr>
<tr>
<td>UGT1A7</td>
<td>UDP glycosyltransferase 1 family, polypeptide A7</td>
<td>019077</td>
<td>606432</td>
<td>AR</td>
<td>UGT1A7 deficiency</td>
<td></td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AR, autosomal recessive; Inh, inheritance; XL, X-linked