Colorectal Cancer – Predictive Testing for Anti-EGFR Therapy

Indications for Ordering

Indicated for individuals with metastatic colorectal cancer (CRC) to guide treatment with anti-EGFR monoclonal antibodies (cetuximab and panitumumab)

Test Description

MassARRAY – matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry
 - Simultaneous detection of mutations in BRAF, KRAS, NRAS, PIK3CA

Pyrosequencing
 - Single gene assays for detection of mutations in BRAF, KRAS, NRAS, PIK3CA

MassARRAY and pyrosequencing mutation detection
 - BRAF – codon 600
 - KRAS – codons 12, 13, 61 (MassARRAY also detects codon 146)
 - NRAS – codons 12, 13, 61
 - PIK3CA – codons 542, 545, 1047

Immunohistochemistry (IHC)
 - Detection of PTEN expression

Next generation sequencing (NGS)
 - Extensive coverage of mutations in 48 genes, including BRAF, KRAS, NRAS, PIK3CA, PTEN
 - Full gene and variant list at www.arulab.com/ngs-oncology-mutations

Tests to Consider

Primary test
Colon Cancer Gene Panel, Somatic 2011616
 - Use for individuals with metastatic CRC to guide treatment with anti-EGFR monoclonal antibodies (cetuximab and panitumumab)
 - Detects mutations in BRAF, KRAS, NRAS, extended KRAS, and PIK3CA

Related tests

Solid Tumor Mutation Panel by Next Generation Sequencing 2007991
 - Aids in therapeutic decisions for solid tumor cancers
 - Simultaneously evaluates mutations in 48 genes, including BRAF, KRAS, NRAS, PIK3CA
 - Predicts prognosis and therapeutic response in patients with solid tumor cancers

KRAS Mutation Detection with Reflex to BRAF Codon 600 Mutation Detection 2001932
 - Determine eligibility for anti-EGFR (cetuximab and panitumumab) therapy in patients with metastatic CRC

KRAS Mutation Detection 0040248
 - Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, CRC and lung cancer)

BRAF Codon 600 Mutation Detection by Pyrosequencing 2002498
 - Use to detect activating BRAF mutations at codon 600
 - Can indicate resistance to anti-EGFR therapy in CRC
 - Also used within the Lynch syndrome reflex testing pathway (for CRC specimens only)

BRAF V600E Mutation Detection in Circulating Cell-Free DNA by Digital Droplet PCR 2013921
 - Determines BRAF V600E mutation status in patients with solid tumors to select candidates for targeted therapy with kinase inhibitors (BRAF and/or MEK)
 - Monitors response to therapy and disease progression in patients carrying BRAF V600E mutation

PTEN by Immunohistochemistry 2004115

PTEN with Interpretation by Immunohistochemistry 2007031
 - Detects loss of PTEN expression in tumor tissue
 - Possibly associated with relative resistance to anti-EGFR therapy

NRAS Mutation Detection by Pyrosequencing 2003123
 - Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, melanoma and CRC)

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology.
500 Chipeta Way, Salt Lake City, UT 84108 | (800) 522-2787 | (801) 583-2787 | www.arulab.com | www.arupconsult.com
© 2013 ARUP LABORATORIES | Last Update August 2017
Disease Overview

- CRC is one of the most commonly diagnosed malignancies worldwide.
- EGFR represents an important therapeutic target in advanced CRC.
- 2 anti-EGFR monoclonal antibodies (cetuximab and panitumumab) are available for treatment of advanced CRC.
- KRAS, BRAF, and possibly PIK3CA, PTEN, and NRAS mutations are associated with resistance to anti-EGFR therapy.

Genetics and Test Interpretation

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutations</th>
<th>Sensitivity/Specificity</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| **KRAS** | GTPase-encoding gene in the RAS/RAF/MAPK pathway | Clinical sensitivity — activating KRAS mutations found in ~40% of CRCs. Analytic sensitivity/ specificity — 100% | Positive | • Limit of detection
| | Majority of oncogenic mutations — codons 12 and 13 (>90%) | | • Oncogenic KRAS mutation detected | o MassARRAY and pyrosequencing – 10% mutant alleles
| | Most of the remaining activating mutations — codons 61 and 146 | | • Lack of response to therapy with antibodies targeted to EGFR is predicted | o NGS – 5% mutant alleles
| | | | • No oncogenic KRAS mutation detected | • MassARRAY – oncogenic mutations outside of codons 12, 13, 61, 146 will not be detected
| | | | • Follow-up BRAF testing is advised prior to initiation of anti-EGFR therapy | • Pyrosequencing – oncogenic mutations outside of codons 12, 13, 61 will not be detected
| | | | | • A substantial portion of individuals with wild type KRAS still fail to respond to anti-EGFR agents, implicating downstream mutations |
| **BRAF** | Kinase-encoding gene in the RAS/RAF/MAPK pathway | Clinical sensitivity — activating BRAF mutation found in ~10% of CRCs. Analytic sensitivity/ specificity — 100% | Positive | • Limit of detection
| | Majority of activating mutations — codon 600 | | • Oncogenic BRAF mutation detected | o MassARRAY and pyrosequencing – 10% mutant alleles
| | Mutually exclusive with KRAS mutations in individuals with CRC | | • Available data suggest resistance to anti-EGFR therapy | o NGS – 5% mutant alleles
| | | | • Appears to be associated with a worse prognosis | • MassARRAY and pyrosequencing – oncogenic mutations outside of codon 600 will not be detected |
| | | | | |
| **PIK3CA** | Encodes a subunit of the PI3K protein | Clinical sensitivity — oncogenic PIK3CA mutation found in 10-20% of CRC, mostly exons 9 (60-65%) or 20 (20-25%). Analytic sensitivity/ specificity — 100% | Positive | • Limit of detection
| | Exon 9 gain-of-function mutation (codons 542 or 545) requires interaction with RAS | | • Oncogenic PIK3CA mutation detected | o MassARRAY and pyrosequencing – 10% mutant alleles
| | • May have no effect on cetuximab therapy | | • Tumor may respond to therapies targeted at genes downstream of PI3K in the AKT/mTOR signaling cascade | o NGS – 5% mutant alleles
| | Exon 20 (codon 1047) mutation is independent of RAS binding | | • Exon 20 (kinase domain) mutations may indicate resistance to anti-EGFR therapy in wild type KRAS tumors | • MassARRAY and pyrosequencing – oncogenic mutations outside of codons 542, 545, 1047 will not be detected |
| | • Appears to have a negative effect on response to cetuximab | | • Negative impact on the prognosis of advanced CRC | |
| | | | • No oncogenic PIK3CA mutation detected | |
| **PTEN** | Tumor suppressor gene in the PI3K/AKT pathway | Clinical sensitivity — loss of expression found in up to 50% of CRCs. | Abnormal | • Limit of detection
| | Loss has been predicted to show resistance to anti-EGFR therapy | | • Possible resistance to anti-EGFR therapy | o MassARRAY and pyrosequencing – 10% mutant alleles
| | | | Normal | o NGS – 5% mutant alleles
| | | | • PTEN expression is intact | • MassARRAY and pyrosequencing – oncogenic mutations outside of codons 542, 545, 1047 will not be detected |

© 2013 ARUP LABORATORIES | Last Update August 2017
NRAS
GTPase-encoding gene in the RAS/RAF/MAPK pathway

Gene
- NRAS

Mutations
- Majority of activating mutations – codon 61
- Mutually exclusive with KRAS mutations in individuals with CRC
- Associated with relative resistance to anti-EGFR therapy

Sensitivity/Specificity
- Clinical sensitivity – oncogenic NRAS mutation found in ~3% of CRCs
- Analytic sensitivity/specificity – 100%

Results
- **Positive**
 - Oncogenic NRAS mutation detected
 - Predictive of relative resistance to anti-EGFR therapy
- **Negative**
 - No oncogenic NRAS mutation detected

Limitations
- **Positive**
 - Limit of detection
 - MassARRAY and pyrosequencing – 10% mutant alleles
 - NGS – 5% mutant alleles
 - MassARRAY and pyrosequencing – oncogenic mutations outside of codons 12, 13, 61 will not be detected
 - Presence or absence of mutations does not guarantee a response or lack of response to anti-EGFR therapy

Lung Cancer Molecular Markers

Indications for Ordering

Mutation testing to aid in selection of tyrosine kinase inhibitor (TKI) and/or immune checkpoint inhibitor therapy

Tests to Consider

Typical testing strategy

Minimum initial recommendation – lung cancer panel that includes simultaneous ordering for mutations in ALK, EGFR, and ROS1 genes

Primary tests

Determine eligibility for TKI therapy (panel tests)

Lung Cancer Panel 2008894
- Screening panel detects
 - EGFR mutations
 - ALK and ROS1 fusion proteins

Lung Cancer Panel with KRAS 2008895
- Screening panel detects
 - EGFR and KRAS mutations
 - ALK and ROS1 fusion proteins

Determine eligibility for TKI therapy (single tests)

ALK (D5F3) with Interpretation by Immunohistochemistry 2007324
- Detects ALK fusion proteins

ALK (D5F3) by Immunohistochemistry with Reflex to ALK Gene Rearrangements by FISH 2011431
- Detects ALK fusion proteins and ALK gene rearrangements in solid tumors

ALK Gene Rearrangements by FISH, Lung 2006102
- Screening test for all ALK fusions
- Use this test if the companion diagnostic test for crizotinib is required
- Does not identify the translocation partner or variant

EGFR Mutation Detection by Pyrosequencing 2002440

KRAS Mutation Detection 0040248
- Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, colorectal and lung cancer)

c-MET by Immunohistochemistry 2008652
- Detects overexpression of c-MET protein

MET Gene Amplification by FISH 2013082
- Aids in prognostication and therapeutic decisions for neoplasms where amplification has been demonstrated
- Screening test for MET gene amplification

RET Gene Rearrangements by FISH 2012654
- Detects RET gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS1 by FISH 2008418
- Detects ROS1 gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS1 with Interpretation by Immunohistochemistry with Reflex to FISH if Equivocal 2008414
- Detects ROS1 fusion proteins and ROS1 gene rearrangements

Screening for immune checkpoint inhibitor therapy

FDA-approved PD-L1 companion tests

PD-L1 22C3 pharmDx by Immunohistochemistry with Interpretation, pembrolizumab (KEYTRUDA) 2013284
- Aid in prediction of response to pembrolizumab (KEYTRUDA), as first- or second-line therapy, for patients with non-small cell lung cancer (NSCLC)
- Can be performed in conjunction with or instead of PD-L1 28-8

PD-L1 28-8 pharmDx by Immunohistochemistry with Interpretation, nivolumab (OPDIVO) 2013684
- Aids in prediction of response to nivolumab for patients with non-squamous NSCLC or melanoma
- Can be performed in conjunction with or instead of PD-L1 22C3

© 2013 ARUP LABORATORIES | Last Update August 2017
Monitor for EGFR T790M resistance

EGFR T790M Mutation Detection in Circulating Tumor DNA by Digital Droplet PCR 2012868

- Monitor blood plasma or cerebrospinal fluid (CSF) for
 - Development of *EGFR* T790M drug-resistant mutation in patients administered TKI therapy for *EGFR*-mutant NSCLC
 - Response to therapy and disease progression in patients receiving *EGFR* T790M-specific TKIs

Related test

Solid Tumor Mutation Panel by Next Generation Sequencing 2007991

- Aids in therapeutic decisions for solid tumor cancers
- Simultaneously evaluates mutations in multiple genes, including *AKT1, ALK, BRAF, EGFR, ERBB2, ERBB4, KRAS, NRAS*, and *PIKC3CA*
- Does not detect translocations

Test Methodology

- **ALK**
 - Immunohistochemistry (IHC) using ALK clone D5F3
 - Fluorescence in situ hybridization (FISH)
- **EGFR** – polymerase chain reaction (PCR) and pyrosequencing
 - Detects mutations at codons 719 (exon 18), 768 and 790 (exon 20), 858 and 861 (exon 21)
 - Detects deletions in exon 19
- **EGFR T790M (serum)** – digital droplet PCR
- **KRAS** – PCR and pyrosequencing
 - Detects mutations at codons 12, 13 (exon 2), and 61 (exon 3)
- **c-MET** – IHC
- **MET** – FISH
- **PD-L1** – IHC
- **RET** – FISH
 - Detects all RET gene fusions
- **ROS1** – (using ROS1 clone D4D6) with FISH reflex if equivocal

Test Interpretation

Results

Single gene testing (includes genes in panels) – see table

Limitations

- Results must be interpreted in the context of clinical findings and morphological and other relevant data
- Results may be compromised if the recommended tissue-fixation procedures have not been followed

Disease Overview

Incidence

Lung cancer is the second most common cancer in U.S.

Treatment issues

- Lung cancer has poor response to traditional chemotherapy agents
 - Dismal 5-year outcome when using these agents
 - Newer targeted agents have better response rates in specific individuals and tumor types
- Tumor response rates to targeted therapy are closely associated with mutation status of the tumor, especially for adenocarcinoma or mixed adenocarcinoma subtypes
- Mutation status
 - Determines TKI therapy eligibility
 - Confers resistance to TKIs (eg, *EGFR T790M* mutation)
 - Monitoring in serum for *EGFR T790M* mutation may detect TKI resistance sooner and alter treatment plans
- **PD-L1** expression
 - May predict response to immune checkpoint inhibitor therapy

References

- Francis G, Stein S. Circulating cell-free tumour DNA in the management of cancer. *Int J Mol Sci*. 2015:16;14122-14142

© 2013 ARUP LABORATORIES | Last Update August 2017
Single Gene Testing

<table>
<thead>
<tr>
<th>Gene</th>
<th>Testing method</th>
<th>Test result</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK</td>
<td>IHC</td>
<td>Positive – cytoplasmic staining in tumor cells</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equivocal – very weak cytoplasmic staining visible only on higher power by microscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative – no cytoplasmic staining in tumor cells</td>
<td></td>
</tr>
<tr>
<td>FISH</td>
<td></td>
<td>Positive – ALK gene rearrangements detected in ≥15% of nuclei</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not identify translocation partner</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td>EGFR T790M (serum) Digital droplet PCR</td>
<td>Positive – mutation detected</td>
<td>Predicts resistance to TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expressed as percentage</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td>MET</td>
<td>FISH</td>
<td>Positive – detects gene amplification</td>
<td>• May predict response to crizotinib TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Associated with acquired resistance to EGFR inhibitors in 5-20% of patients with EGFR-mutated tumors</td>
</tr>
<tr>
<td>RET</td>
<td>FISH</td>
<td>Positive – gene rearrangements detected</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not identify translocation partner</td>
<td></td>
</tr>
<tr>
<td>ROS1</td>
<td>IHC FISH reflex</td>
<td>Positive – uniform membranous staining in tumor cells</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equivocal – any degree of cytoplasmic staining or focal/weak membranous staining in tumor cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reflexes to FISH for confirmation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Does not identify translocation partner</td>
<td></td>
</tr>
</tbody>
</table>