Colorectal Cancer – Predictive Testing for Anti-EGFR Therapy

Indications for Ordering

Indicated for individuals with metastatic colorectal cancer (CRC) to guide treatment with anti-EGFR monoclonal antibodies (cetuximab and panitumumab)

Test Description

MassARRAY – matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry
- Simultaneous detection of mutations in BRAF, KRAS, NRAS, PIK3CA

Pyrosequencing
- Single gene assays for detection of mutations in BRAF, KRAS, NRAS, PIK3CA

MassARRAY and pyrosequencing mutation detection
- BRAF – codon 600
- KRAS – codons 12, 13, 61 (MassARRAY also detects codon 146)
- NRAS – codons 12, 13, 61
- PIK3CA – codons 542, 545, 1047

Next generation sequencing (NGS)
- Extensive coverage of mutations in 44 genes, including BRAF, KRAS, NRAS, PIK3CA, PTEN
- Full gene and variant list at www.aruplab.com/ngs-oncology-mutations

Tests to Consider

Primary test
Colorectal Cancer Gene Panel, Somatic 2011616
- Use for individuals with metastatic CRC to guide treatment with anti-EGFR monoclonal antibodies (cetuximab and panitumumab)
- Detects mutations in BRAF, KRAS, NRAS, extended KRAS, and PIK3CA

Related tests

Solid Tumor Mutation Panel by Next Generation Sequencing 2007991
- Aids in therapeutic decisions for solid tumor cancers
- Simultaneously evaluates mutations in 44 genes, including BRAF, KRAS, NRAS, PIK3CA, PTEN
- Predicts prognosis and therapeutically in patients with solid tumor cancers

KRAS Mutation Detection with Reflex to BRAF Codon 600 Mutation Detection 2001392
- Determine eligibility for anti-EGFR (cetuximab and panitumumab) therapy in patients with metastatic CRC

KRAS Mutation Detection 0040248
- Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, CRC and lung cancer)

BRAF Codon 600 Mutation Detection by Pyrosequencing 2002498
- Use to detect activating BRAF mutations at codon 600
- Can indicate resistance to anti-EGFR therapy in CRC
- Also used within the Lynch syndrome reflex testing pathway (for CRC specimens only)

BRAF V600E Mutation Detection in Circulating Cell-Free DNA by Digital Droplet PCR 2013921
- Determines BRAF V600E mutation status in patients with solid tumors to select candidates for targeted therapy with kinase inhibitors (BRAF and/or MEK)
- Monitors response to therapy and disease progression in patients carrying BRAF V600E mutation

NRAS Mutation Detection by Pyrosequencing 2003123
- Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, melanoma and CRC)
Disease Overview

- CRC is 1 of the most commonly diagnosed malignancies worldwide
- EGFR represents an important therapeutic target in advanced CRC
- 2 anti-EGFR monoclonal antibodies (cetuximab and panitumumab) are available for treatment of advanced CRC
- KRAS, BRAF, and possibly PIK3CA, PTEN, and NRAS mutations are associated with resistance to anti-EGFR therapy

Genetics and Test Interpretation

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutations</th>
<th>Sensitivity/Specificity</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>Majority of oncogenic mutations – codons 12 and 13 (>90%)</td>
<td>Clinical sensitivity – activating KRAS mutations found in ~40% of CRCs</td>
<td>Positive</td>
<td>Limit of detection</td>
</tr>
<tr>
<td></td>
<td>Most of the remaining activating mutations – codons 61 and 146</td>
<td>Analytic sensitivity/specificity = 100%</td>
<td>Oncogenic KRAS mutation detected</td>
<td>o MassARRAY and pyrosequencing – 10% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lack of response to therapy with antibodies targeted to EGFR is predicted</td>
<td>o NGS – 5% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up BRAF testing is advised prior to initiation of anti-EGFR therapy</td>
<td>MassARRAY – oncogenic mutations outside of codons 12, 13, 61, 146 will not be detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pyrosequencing – oncogenic mutations outside of codons 12, 13, 61 will not be detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A substantial portion of individuals with wild type KRAS still fail to respond to anti-EGFR agents, implicating downstream mutations</td>
</tr>
<tr>
<td>BRAF</td>
<td>Majority of activating mutations – codon 600</td>
<td>Clinical sensitivity – activating BRAF mutation found in ~10% of CRCs</td>
<td>Positive</td>
<td>Limit of detection</td>
</tr>
<tr>
<td></td>
<td>Mutually exclusive with KRAS mutations in individuals with CRC</td>
<td>Analytic sensitivity/specificity = 100%</td>
<td>Oncogenic BRAF mutation detected</td>
<td>o MassARRAY and pyrosequencing – 10% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Available data suggest resistance to anti-EGFR therapy</td>
<td>o NGS – 5% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Appears to be associated with a worse prognosis</td>
<td>MassARRAY and pyrosequencing – oncogenic mutations outside of codon 600 will not be detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td>Exon 9 gain-of-function mutation (codons 542 or 545) requires interaction</td>
<td>Clinical sensitivity – oncogenic PIK3CA mutation found in 10-20% of CRCs, mostly</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with KRAS</td>
<td>exons 9 (60-65%) or 20 (20-25%)</td>
<td>Oncogenic PIK3CA mutation detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* May have no effect on cetuximab therapy</td>
<td>Analytic sensitivity/specificity = 100%</td>
<td>o Tumor may respond to therapies targeted at genes downstream of PIK3 in the AKT/mTOR signaling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Exon 20 (codon 1047) mutation is independent of RAS binding</td>
<td></td>
<td>cascade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Appears to have a negative effect on response to cetuximab</td>
<td></td>
<td>o Exon 20 (kinase domain) mutations may indicate resistance to anti-EGFR therapy in wild type KRAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Negative impact on the prognosis of advanced CRC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN</td>
<td>Loss has been predicted to show resistance to anti-EGFR therapy</td>
<td>Clinical sensitivity – loss of expression found in up to 50% of CRCs</td>
<td>Abnormal</td>
<td>Limit of detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Possible resistance to anti-EGFR therapy</td>
<td>o MassARRAY and pyrosequencing – 10% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
<td>o NGS – 5% mutant alleles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PTEN expression is intact</td>
<td>MassARRAY and pyrosequencing – oncogenic mutations outside of codons 542, 545, 1047 will not be detected</td>
</tr>
</tbody>
</table>

© 2013 ARUP LABORATORIES | Content Review April 2018 | Last Update April 2018
<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutations</th>
<th>Sensitivity/Specificity</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRAS</td>
<td>GTPase-encoding gene in the RAS/RAF/MAPK pathway</td>
<td>Majority of activating mutations – codon 61 Mutually exclusive with KRAS mutations in individuals with CRC Associated with relative resistance to anti-EGFR therapy</td>
<td>Clinical sensitivity – oncogenic NRAS mutation found in ~3% of CRCs Analytic sensitivity/specificity – 100%</td>
<td>Positive • Oncogenic NRAS mutation detected • Predictive of relative resistance to anti-EGFR therapy Negative • No oncogenic NRAS mutation detected</td>
</tr>
</tbody>
</table>

Lung Cancer Molecular Markers

Indications for Ordering

Mutation testing to aid in selection of tyrosine kinase inhibitor (TKI) and/or immune checkpoint inhibitor therapy

Tests to Consider

Typical testing strategy
Minimum initial recommendation – lung cancer panel that includes simultaneous ordering for mutations in ALK, EGFR, and ROS1 genes

Primary tests

Determine eligibility for TKI therapy (panel tests)

Lung Cancer Panel 2008894
- Screening panel detects
 - EGFR mutations
 - ALK and ROS1 fusion proteins

Lung Cancer Panel with KRAS 2008895
- Screening panel detects
 - EGFR and KRAS mutations
 - ALK and ROS1 fusion proteins

Determine eligibility for TKI therapy (single tests)

ALK (D5F3) with Interpretation by Immunohistochemistry 2007324
- Detects ALK fusion proteins

ALK (D5F3) by Immunohistochemistry with Reflex to ALK Gene Rearrangements by FISH 2011431
- Detects ALK fusion proteins and ALK gene rearrangements in solid tumors

ALK Gene Rearrangements by FISH, Lung 2006102
- Screening test for all ALK fusions
 - Use this test if the companion diagnostic test for crizotinib is required
 - Does not identify the translocation partner or variant

EGFR Mutation Detection by Pyrosequencing 2002440

KRAS Mutation Detection 0040248
- Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, colorectal and lung cancer)

c-MET by Immunohistochemistry 2008652
- Detects overexpression of c-MET protein

MET Gene Amplification by FISH 2013082
- Aids in prognostication and therapeutic decisions for neoplasms where amplification has been demonstrated
- Screening test for MET gene amplification

RET Gene Rearrangements by FISH 2012654
- Detects RET gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS1 by FISH 2008418
- Detects ROS1 gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS 1 with Interpretation by Immunohistochemistry with Reflex to FISH if Equivocal or Positive 2008414
- Detects ROS1 fusion proteins and ROS1 gene rearrangements

Screening for immune checkpoint inhibitor therapy FDA-approved PD-L1 companion tests

PD-L1 22C3 IHC for NSCLC with Interpretation, pembrolizumab (KEYTRUDA) 2013284
- Companion diagnostic test to aid in prediction of response to pembrolizumab (KEYTRUDA) as first- or second-line monotherapy for patients with non-small cell lung cancer (NSCLC)
- Can be performed in conjunction with or instead of PD-L1 28-8
- For NSCLC specimens only
 - For gastroesophageal junction (GEJ), urothelial, and cervical specimens, see PD-L1 22C3 IHC with Combined Positive Score (CPS) Interpretation, pembrolizumab (KEYTRUDA) 3000197
PD-L1 28-8 pharmDx by Immunohistochemistry with Interpretation, nivolumab (OPDIVO) 2013684

- FDA-approved complementary codiagnostic test to aid in prediction of response to nivolumab (OPDIVO) for patients with nonsquamous NSCLC, melanoma, urothelial carcinoma, and head and neck squamous cell carcinoma (HNSCC)

Monitor for EGFR T790M resistance

EGFR T790M Mutation Detection in Circulating Tumor DNA by Digital Droplet PCR 2012868

- Monitor blood plasma or cerebrospinal fluid (CSF) for
 - Development of *EGFR* T790M drug-resistant mutation in patients administered TKI therapy for *EGFR*-mutant NSCLC
 - Response to therapy and disease progression in patients receiving *EGFR* T790M-specific TKIs

Related test

Solid Tumor Mutation Panel by Next Generation Sequencing 2007991

- Aids in therapeutic decisions for solid tumor cancers
- Simultaneously evaluates mutations in multiple genes, including *AKT1, ALK, BRAF, EGFR, ERBB2, ERBB4, KRAS, NRAS,* and *PIKC3CA*
- Does not detect translocations

Test Methodology

ALK

- Immunohistochemistry (IHC) using ALK clone D5F3
- Fluorescence in situ hybridization (FISH)

EGFR – polymerase chain reaction (PCR) and pyrosequencing

- Detects mutations at codons 719 (exon 18), 768 and 790 (exon 20), 858 and 861 (exon 21)
- Detects deletions in exon 19

EGFR T790M (serum) – digital droplet PCR

KRAS – PCR and pyrosequencing

- Detects mutations at codons 12, 13 (exon 2), and 61 (exon 3)

c-MET – IHC

MET – FISH

PD-L1 – IHC

RET – FISH

- Detects all *RET* gene fusions

ROS1 – IHC (using ROS1 clone D4D6) with FISH reflex if equivocal

Test Interpretation

Results

Single gene testing (includes genes in panels) – see table

Limitations

- Results must be interpreted in the context of clinical findings and morphological and other relevant data
- Results may be compromised if the recommended tissue-fixation procedures have not been followed

Disease Overview

Incidence

Lung cancer is the second most common cancer in U.S.

Treatment issues

- Lung cancer has poor response to traditional chemotherapy agents
 - Dismal 5-year outcome when using these agents
 - Newer targeted agents have better response rates in specific individuals and tumor types
- Tumor response rates to targeted therapy are closely associated with mutation status of the tumor, especially for adenocarcinoma or mixed adenocarcinoma subtypes
 - Mutation status
 - Determines TKI therapy eligibility
 - Confers resistance to TKIs (eg, *EGFR T790M* mutation)
 - Monitoring in serum for *EGFR T790M* mutation may detect TKI resistance sooner and alter treatment plans
- PD-L1 expression
 - May predict response to immune checkpoint inhibitor therapy

References

<table>
<thead>
<tr>
<th>Gene</th>
<th>Testing method</th>
<th>Test result</th>
<th>May predict response to TKI therapy</th>
</tr>
</thead>
</table>
| ALK | IHC | Positive – uniform membranous staining in tumor cells
 Equivocal – very weak cytoplasmic staining visible only on higher power by microscopy
 Negative – no cytoplasmic staining in tumor cells | |
| | FISH | Positive – ALK gene rearrangements detected in ≥15% of nuclei
 • Does not identify translocation partner | |
Single Gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>Testing method</th>
<th>Test result</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td></td>
<td>EGFR T790M (serum)</td>
<td>Positive – mutation detected</td>
<td>Predicts resistance to TKI therapy</td>
</tr>
<tr>
<td></td>
<td>Digital droplet PCR</td>
<td>• Expressed as percentage</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td>May predict response to TKI therapy</td>
</tr>
<tr>
<td>MET</td>
<td>FISH</td>
<td>Positive – detects gene amplification</td>
<td>• May predict response to crizotinib TKI therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Associated with acquired resistance to EGFR inhibitors in 5-20% of patients with EGFR-mutated tumors</td>
</tr>
</tbody>
</table>