Holoprosencephaly Panel, Sequencing and Deletion/Duplication

Indications for Ordering

- Determine the etiology of holoprosencephaly (HPE) to aid in counseling and assessing recurrence risk
- Determine if parents of an affected individual are carriers (the affected individual should be tested first, if possible)

Test Description

- Targeted capture of all coding exons and exon-intron junctions followed by massively parallel sequencing
 - Sanger sequencing is performed as necessary to fill in regions of low coverage and confirm reported variants
 - For fetal specimens, all clinically significant reported sequence variants are confirmed by Sanger sequencing
- Deletion/duplication analysis by the tiled, custom-designed comparative genomic hybridization (CGH) array
- 11-gene panel covers most nonsyndromic HPE

Tests to Consider

Primary tests

- **Holoprosencephaly Panel, Sequencing and Deletion/Duplication 2008848**
 - Preferred test for individual with clinical phenotype of HPE and a normal karyotype
- **Holoprosencephaly Panel, Sequencing and Deletion/Duplication, Fetal 2008863**
 - Preferred test for fetuses with HPE that is not caused by a structural or numerical chromosome abnormality

Related tests

- **Chromosome Analysis, Peripheral Blood 2002289**
- **Chromosome Analysis, Amniotic Fluid 2002293**
- **Chromosome Analysis, Chorionic Villus Sampling 2002291**
- **Chromosome Analysis, Products of Conception, with Reflex to Genomic Microarray 2005762**

Disease Overview

Incidence – 1/250 embryos and 1/10,000-16,000 live births

Classification – HPE is a brain malformation

- Results from incomplete separation of the forebrain at 3 to 5 weeks post conception
- HPE classification – ranges from the most severe to the least severe depending on the degree of brain separation
 - Alobar variant
 - Semilobar variant
 - Lobar variant
 - Middle interhemispheric variant
 - Microform

Symptoms

Most common symptoms

- Microcephaly
- Macrocephaly in cases with hydrocephalus
- Seizures
- Pituitary dysfunction
- Characteristic midline facial defects
- Intellectual deficits – range from very mild to severe
- Cardiac, gastrointestinal, urogenital, and skeletal malformations
- Diabetes insipidus
- Only 20-30% of infants with alobar HPE survive 1 year
- MRI provides confirmation of the diagnosis

Genetics

Genes – *DISP1, FGF8, FOXH1, GLI2, NODAL, PTC1, SHH, SIX3, TDGF1, TGIF1, and ZIC2*

Inheritance

- Autosomal dominant – *DISP1, FOXH1, GLI2, NODAL, PTC1, SHH, SIX3, TDGF1, TGIF1, and ZIC2* genes
- Autosomal recessive – *FGF8* gene

Penetrance – depends on the specific gene and variant; higher penetrance for *ZIC2* gene variants

Variants

- 25-50% of HPE caused by structural or numerical chromosomal abnormalities – best detected by chromosomal studies
- 25% of HPE occurs as part of a recognizable syndrome resulting from single gene variants
- 25% of HPE is nonsyndromic monogenic
Test Interpretation

Clinical sensitivity – unknown

Results

- Positive
 - Detection of a pathogenic HPE gene variant in a symptomatic individual confirms etiology and aids in recurrence risk counseling
 - Detection of a pathogenic gene variant in an asymptomatic individual indicates the individual has a 50% risk of passing the variant on to offspring
- Inconclusive
 - Variants of unknown clinical significance may be identified

Limitations

- Only the following genes are tested – DISP1, FGF8, FOXH1, GLI2, NODAL, PTCH1, SHH, SIX3, TDGF1, TGIF1, and ZIC2
- Structural and numeric chromosomal abnormalities will not be detected
- Diagnostic errors can occur due to rare sequence variations
- Deep intronic and regulatory region variants will not be evaluated
- Breakpoints for large deletion/duplications will not be determined

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>NM #</th>
<th>OMIM #</th>
<th>Inheritance</th>
<th>Disorder</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHH</td>
<td>Sonic hedgehog (Drosophila) homologue</td>
<td>000193</td>
<td>600725</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>30-40%</td>
</tr>
<tr>
<td>ZIC2</td>
<td>Zic family member 2 (odd-paired Drosophila homologue)</td>
<td>007129</td>
<td>603073</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>5%</td>
</tr>
<tr>
<td>SIX3</td>
<td>Sine oculis homebox (drosophila homolog 3)</td>
<td>005413</td>
<td>603714</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>1%</td>
</tr>
<tr>
<td>TGIF1</td>
<td>Transforming growth factor beta induced factor homeobox 1</td>
<td>173208</td>
<td>602630</td>
<td>Autosomal dominant</td>
<td>HPE, Stalk interruption syndrome</td>
<td>1%</td>
</tr>
<tr>
<td>GLI2</td>
<td>GLI - Kruppel family member GLI2 - Transcriptional factor mediating hedgehog signaling</td>
<td>005270</td>
<td>165230</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Unknown</td>
</tr>
<tr>
<td>PTCH1</td>
<td>Patched (Drosophila) homologue</td>
<td>000264</td>
<td>601309</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Rare</td>
</tr>
<tr>
<td>FGF8</td>
<td>Fibroblast growth factor 8 (androgen induced)</td>
<td>033163</td>
<td>600483</td>
<td>Autosomal recessive</td>
<td>HPE</td>
<td>Rare</td>
</tr>
<tr>
<td>FOXH1</td>
<td>Forkhead box H1</td>
<td>003923</td>
<td>603621</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Rare</td>
</tr>
<tr>
<td>NODAL</td>
<td>Nodal, mouse, homologue of establishment</td>
<td>018055</td>
<td>601265</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Rare</td>
</tr>
<tr>
<td>TDGF1</td>
<td>Teratocarcinoma-derived growth factor 1</td>
<td>003212</td>
<td>187395</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Unknown</td>
</tr>
<tr>
<td>DISP1</td>
<td>Dispatched homologue 1 (Drosophila)</td>
<td>005270</td>
<td>607502</td>
<td>Autosomal dominant</td>
<td>HPE</td>
<td>Unknown</td>
</tr>
</tbody>
</table>