Classic **BCR-ABL1**-negative Myeloproliferative Neoplasms

Indications for Ordering

Diagnose and manage classic **BCR-ABL1**-negative myeloproliferative neoplasms (MPNs)
- Polycythemia vera (PV)
- Essential thrombocytopenia (ET)
- Primary myelofibrosis (PMF)
- Other myeloproliferative disorders

Test Descriptions

JAK2 Gene, V617F Mutation, Qualitative
- Polymerase chain reaction (PCR)

JAK2 Gene, V617F Mutation, Quantitative
- PCR
- Mutant-to-wild type allele ratio is reported

CALR (Calreticulin) Exon 9 Mutation Analysis by PCR
- PCR/capillary electrophoresis

Myeloid Malignancies Mutation Panel by Next Generation Sequencing
- Massively parallel sequencing

JAK2 Exon 12 Mutation Analysis by PCR
- Allele-specific PCR amplification with subsequent sequencing of positive products to detect single and multiple base substitutions within exon 12 of the JAK2 gene

MPL codon 515 Mutation Detection by Pyrosequencing, Quantitative
- PCR/pyrosequencing
- Wild type-to-mutant allele ratio is reported

Myeloproliferative Disorders Panel by FISH
- Fluorescence in situ hybridization

Tests to Consider

JAK2 Gene, V617F Mutation, Qualitative 0051245
- Reasonable screening test for routine evaluation of
 - Unexplained erythrocytosis
 - Thrombocytosis
 - **BCR-ABL1**-negative granulocytosis
 - Bone marrow (BM) fibrosis
- Appropriate screen in patients with symptoms characteristic for **BCR-ABL1**-negative MPN
 - Unusual thrombotic events (eg, splanchnic vein thrombosis, Budd-Chiari)
 - Aquagenic pruritus
 - Unexplained splenomegaly

JAK2 Gene, V617F Mutation, Quantitative 0040168
- May be useful in assessment of residual disease after stem cell transplant
- Enhances diagnostic certainty in cases with low mutant allelic burden

CALR (Calreticulin) Exon 9 Mutation Analysis by PCR 2010673
- Use for diagnostic and prognostic information in patients with myeloproliferative neoplasms (MPNs) when JAK2 testing is negative

Myeloid Malignancies Mutation Panel by Next Generation Sequencing 2011117
- Assess for single gene mutations, including substitutions and insertions and deletions that may have diagnostic, prognostic, and/or therapeutic significance

JAK2 Exon 12 Mutation Analysis by PCR 2002357
- Use when MPN suspected and JAK2 V617F testing is negative

MPL Mutation Detection by Capillary Electrophoresis 2005545
- May be useful when essential thrombocytopenia or idiopathic myelofibrosis is suspected in JAK2 V617F-negative individuals

JAK2 Gene, V617F Mutation, Qualitative with Reflex to JAK2 Exon 12 Mutation Analysis by PCR 2012085
- Use when diagnosis of PV is suspected

JAK2 Gene, V617F Mutation, Qualitative with Reflex to CALR (Calreticulin) Exon 9 Mutation Analysis by PCR with Reflex to MPL codon 515 Mutation Detection 2012084
- Use when diagnosis of ET or PMF is suspected

Myeloproliferative Disorders Panel by FISH 2002360
- Detect specific recurrent genomic aberrations in suspected MPNs
 - **BCR/ABL1**
 - PDGFR
 - PDGFRB
 - FGFR1

Disease Overview

Incidence — 5/100,000 worldwide for combined PV, ET, and PMF
PV

- Must exclude secondary causes of erythrocytosis
- **WHO diagnostic criteria (2008)** – must meet both major and 1 minor criteria or the first major and 2 minor criteria

Major criteria
- Evidence of increased RBC volume, including greater than or equal to one of the following
 - Hgb >18.5 g/dL (men), >16.5 g/dL (women)
 - Hgb or Hct >99th percentile of reference
 - Red cell mass >25% above mean predicted
 - Hgb >17 g/dL (men), Hgb >15 g/dL (women) if associated with sustained increase ≥2 g/dL not attributed to correction of iron deficiency anemia
 - Presence of JAK2 (V617F) or JAK2 exon 12 mutations

Minor criteria
- BM trilineage proliferation
- Subnormal serum erythropoietin level
- Endogenous erythroid colony (EEC) growth in vitro

ET

- Must exclude secondary causes of thrombocytosis
- **WHO diagnostic criteria (2008)** – must meet all four criteria

 - Sustained platelet count ≥450 x 10^9/L before treatment
 - BM proliferation of enlarged, mature megakaryocytes
 - Does not meet WHO criteria for BCR-ABL1-positive CML, PV, PMF, MDS, or myeloid malignancy
 - Demonstration of JAK2 (V617F), MPL gene mutations (eg, W515L and W515K), or no evidence of reactive thrombocytosis

PMF

- **WHO diagnostic criteria (2008)** – must meet all three major and two minor criteria

Major criteria
- Megakaryocyte proliferation with atypia in association with reticulin and/or collagen fibrosis or, in the absence of reticulin fibrosis, an increase in BM cellularity associated with granulocyte proliferation and often decreased erythrocyte proliferation
- Does not meet the WHO criteria for BCR-ABL1-positive CML, PV, ET, MDS, or myeloid malignancy
- Presence of JAK2 V617F or other clonal marker or no evidence of reactive marrow fibrosis

Minor criteria
- Leukoerythroblastosis
- Increased serum LDH
- Anemia
- Palpable splenomegaly

Genetics

- **Gene – JAK2**
- **Structure/function**
 - Located on 9p24
 - Nonreceptor tyrosine kinase involved in cytokine receptor signaling

Mutations

- **JAK2 V617F mutation**
 - Present in classic MPNs
 - PV – 90-95%
 - ET – ~50%
 - PMF – 50%
 - Mutations rarely found in non-MPNs such as AML, MDS
 - Mutation is common in the rare MDS/MPN subtype RARS-T (refractory anemia with ring sideroblasts and thrombocytosis)

- **JAK2 exon 12 mutation**
 - Present in the majority of patients with PV who are JAK2 V617F negative
 - Rarely occurs in PMF, ET

Gene – CALR

Structure/function

Chromosome 19p13.3-13.2

- **CALR** encodes a calcium-binding chaperone protein involved in glycoprotein folding and calcium homeostasis

Mutations

Exon 9 mutations

- A variety of insertions/deletions (indels) have been identified
- Net result of the exon 9 indels is a frame shift

Prevalence

- Essential thrombocythemia (ET) – 67% of JAK2 and MPL negative cases (Nangalia, 2013)
- Primary myelofibrosis (PMF) – 88% of JAK2 and MPL negative cases

Diagnostic issues

- **CALR** somatic mutations are seen in a subset of patients with MPNs who lack JAK2 and MPL mutations (Nangalia, 2013)
- **CALR** mutations appear restricted to patients with ET and PMF and are not found in patients with PV (Klampfl, 2013; Nangalia, 2013)

Prognostic issues

- **CALR** mutated ET and PMF are associated with increased overall survival when compared with JAK2 and MPL mutated ET/PMF (Rotunno, 2013)
- **CALR** mutated ET is associated with a decreased incidence of thrombosis when compared to JAK2 mutated ET (Rotunno, 2013)

Gene – MPL

Structure/function

- Located on 1p34
- Thrombopoietin receptor; mutation causes downstream signaling and contributes to megakaryocytic myeloproliferation

© 2013 ARUP LABORATORIES | Content Review May 2018 | Last Update February 2019
Mutations
Several acquired mutations in exon 10 have been reported
- W515L and W515K – most common
 - ET – 3-4%
 - PMF – 8-10%
 - PV – rare
- W515A and S505N – rare

JAK2 Exon 12 Mutation Analysis by PCR
Clinical sensitivity
- PV – 2%

Results
- Positive – meets a diagnostic criterion for JAK2 MPN
- Not detected – no evidence of the JAK2 exon mutation

Limitations
- Only exon 12 mutations are detected
- Limit of detection is 1/1,000 cells

MPL Mutation Detection by Capillary Electrophoresis
Clinical sensitivity
- ET – 3-4%
- PMF – 8-10%
- PV – very rare

Results
- Detected
 - Meets one diagnostic criterion for JAK2 MPN
 - MPL mutations present (W515K, W515L, W515A, and S505N)
 - Mutant allele burden is reported
- Not detected
 - MPL codon 515 mutation not detected

Limitations
- Does not detect mutations in other locations within the MPL gene
- Limit of detection for this test is 5% mutant allele

References