

Solid Tumor Mutation Panel, Sequencing

Individuals diagnosed with a solid tumor cancer may benefit from testing for genetic mutations and variants that can affect treatment options and prognosis. Solid tumor cancers that may benefit from this testing include melanoma,¹ gastrointestinal stromal tumors (GISTs),² hepatocellular carcinomas,³ primary brain tumors,⁴ colorectal,⁵ bladder,⁶ and thyroid cancer,⁷ among others. Testing can be useful at initial diagnosis or in the presence of refractory disease.

Disease Overview

Diagnosis

- Genetic targets contained in the panel, including extended RAS targets,⁵ are relevant across the spectrum of solid tumors.
- Identification of one or more variants may aid in diagnostic subclassification.

Prognosis and Treatment

- Certain gene variants may have prognostic significance.
- Certain gene variants may confer sensitivity or resistance to available targeted therapies.

Genetics

Genes

AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CTNNB1, DDR2, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, GNA11, GNAQ, GNAS, HRAS, IDH1, IDH2, KDR, KIT, KRAS, MAP2K1, MET, MTOR, NOTCH1, NRAS, NTRK1, PDGFRA, PIK3CA, PTEN, RB1, RET, ROS1, SMAD4, SMO, STK11, TERT promoter, TP53, VHL

Variants Detected

- This test is intended to detect somatic mutations, but germline alterations may also be detected.
- The assay does not distinguish between somatic and germline findings.
- Consultation with a genetic counselor is advised if there is any clinical suspicion for a germline alteration.

Featured ARUP Testing

Solid Tumor Mutation Panel, Sequencing 3004294

Method: Massively Parallel Sequencing

- Use to assess for targeted variants that are useful for prognosis and/or treatment of individuals with solid tumor cancers, including melanoma, GIST, colorectal, bladder, and hepatocellular carcinomas, at initial diagnosis or in the presence of refractory disease
- If the clinical indication is lung cancer, additional molecular genetic testing may be considered for detection of gene rearrangements and/or c-MET exon 14-skipping alterations.
- For evaluation of microsatellite instability, additional molecular testing should be considered.

Solid Panel Targeted Regions		
Gene	Accession No.	Targeted Exons
AKT1	NM_001014431.1	3, 4, 6
ALK	NM_004304.4	16-29
APC	NM_000038.5	16 ^a
ATM	NM_000051.3	8, 9, 12, 17, 26, 34-36, 39, 50, 54-56, 59, 61, 63
BRAF	NM_004333.4	11, ^b 14, 15
CDH1	NM_004360.4	3, 8, 9
CDKN2A	NM_000077.4	2 ^b
CTNNB1	NM_001904.3	3
DDR2	NM_001014796.1	18
EGFR	NM_005228.4	18-21
ERBB2	NM_004448.3	8, 17-22
ERBB4	NM_005235.2	3, 4, 6-9, 15, 23
EZH2	NM_004456.4	16, 18 ^b
FBXW7	NM_033632.3	5, 8-11
FGFR1	NM_023110.2	4, 7
FGFR2	NM_000141.4	7, 9, 12
FGFR3	NM_000142.4	7, 9, 14, 16, 18

^ac.2390-c.2879, c.3128-c.3497, c.3730-4932

 $^{^{\}mathrm{b}}\mathrm{Exon}$ known to contain known pseudogenes, homologous genomic regions, and/or low-mappability regions.

cc.374-c.743, c.815-c.1200+10

^dc.7168-c.7657

eOnly c.-124C>T, c.-146C>T, c.-57 A>C, c.-125_124delinsTT, and c.-139_-138delinsTT hotspot promoter variants reported.

Gene	Accession No.	Targeted Exons
GNA11	NM_002067.4	5
GNAQ	NM_002072.4	5 ^b
GNAS	NM_000516.5	8, 9
HRAS	NM_005343.3	2-4
IDH1	NM_005896.3	4
IDH2	NM_002168.3	4
KDR	NM_002253.2	6, 7, 11, 19, 21, 26, 27, 30
KIT	NM_000222.2	2, 9, 10, 11, 13, 14, 15, 17, 18
KRAS	NM_004985.4	2, 3, 4
MAP2K1	NM_002755.3	2, ^b 3, 6, 7, ^b 11 ^b
MET	NM_001127500.2	2, ^c 11, 13, 14, 15, 16, 19
MTOR	NM_004958.3	27-58
NOTCH1	NM_017617.4	26, 27, 34 ^d
NRAS	NM_002524.4	2-5
NTRK1	NM_002529.3	5-15, 17
PDGFRA	NM_006206.4	12, 14, 15, 18
PIK3CA	NM_006218.2	2, 5, 7, 8, 10, ^b 14, ^b 19, 21
PTEN	NM_000314.6	1, ^b 2, ^b 3, 4-9 ^b

^ac.2390-c.2879, c.3128-c.3497, c.3730-4932

 $^{^{\}mathrm{b}}\mathrm{Exon}$ known to contain known pseudogenes, homologous genomic regions, and/or low-mappability regions.

cc.374-c.743, c.815-c.1200+10

^dc.7168-c.7657

 $^{^{}e} Only\ c.-124C>T,\ c.-146C>T,\ c.-57\ A>C,\ c.-125_124 delins TT,\ and\ c.-139_-138 delins TT\ hotspot\ promoter\ variants\ reported.$

Gene	Accession No.	Targeted Exons
RB1	NM_000321.2	4, 6, 10, 11, 14, 17, 18, 20, 21, 22
RET	NM_020975.4	6, 7, 8, 10-13, 15, 16
ROS1	NM_002944.2	7, 31-36, 38, 40, 41
SMAD4	NM_005359.5	3-12
SMO	NM_005631.4	3, 5, 6, 9-11
STK11	NM_000455.4	1, 4, 5, 6, 8
TERT Promoter	NM_198253.2.1	Selected promoter region variants ^e
TP53	NM_000546.5	2-11
VHL	NM_000551.3	1-3

ac.2390-c.2879, c.3128-c.3497, c.3730-4932

Test Interpretation

Analytic Sensitivity

Variant Class	No. of Variants Tested	PPA (%)	PPA (%), 95% Tolerance at 95% Reliability
SNVs	177	99	97.4-99.9
MNVs	42	93	82.2-98.0

^a≤21 bp.

bp, base pairs; MNV, multinucleotide variant; PPA, positive percent agreement; SNV, single nucleotide variant

 $^{^{\}mathrm{b}}\mathrm{Exon}$ known to contain known pseudogenes, homologous genomic regions, and/or low-mappability regions.

cc.374-c.743, c.815-c.1200+10

^dc.7168-c.7657

eOnly c.-124C>T, c.-146C>T, c.-57 A>C, c.-125_124delinsTT, and c.-139_-138delinsTT hotspot promoter variants reported.

^b22-60 bp.

c≥61 bp and ≤64 bp.

^d≥61 bp and ≤13547 bp.

Variant Class	No. of Variants Tested	PPA (%)	PPA (%), 95% Tolerance at 95% Reliability
Small insertions and duplications ^a	42	100	95.6-100.0
Medium insertions and duplications ^b	10	100	82.9-100.0
Large insertions ^c	1	100	22.9-100.0
Small deletions ^a	80	100	97.6-100.0
Medium deletions ^b	14	100	71.2-99.2
Large deletions ^d	22	64	42.9-81.1

^a≤21 bp.

bp, base pairs; MNV, multinucleotide variant; PPA, positive percent agreement; SNV, single nucleotide variant

Results

Results	Variants Detected	Interpretation
Positive	Variants in ≥1 of the 44 genes were detected	Clinical relevance (diagnosis, prognosis, or therapy) will be correlated, if known
Negative	No pathogenic variants were detected	n/a

n/a, not available

Limitations

- Does not detect copy number alterations, translocations, microsatellite instability (MSI), gene rearrangements, and tumor mutational burden
- Variants in areas outside the targeted genomic regions or below the limit of detection (LOD) of 5% variant allele frequency for SNVs or small- to medium-sized MNVs (<60 bp) will not be detected.
- 10 ng input DNA from extracted tissue sample is minimally required, but 50 ng input DNA is recommended for optimal results.
- Large variants (>60 bp) may not be detected.

^b22-60 bp.

c≥61 bp and ≤64 bp.

d≥61 bp and ≤13547 bp.

- Variants in known pseudogenes, homologous genomic regions, and/or low-mappability regions may not be detected (see the Solid Panel Targeted Regions table).
- · Not intended to detect minimal residual disease
- Does not distinguish between somatic and germline variants

References

- 1. Seth R, Messersmith H, Kaur V, et al. Systemic therapy for melanoma: ASCO guideline. J Clin Oncol. 2020;38(33):3947-3970.
- 2. von Mehren M, Joensuu H. Gastrointestinal stromal tumors. J Clin Oncol. 2018;36(2):136-143.
- 3. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. *Cell*. 2017;169(7):1327-1341.e23.
- 4. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, et al. Molecular pathology of tumors of the central nervous system. *Ann Oncol*. 2019;30(8):1265-1278.
- Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. *J Clin Oncol*. 2017;35(13):1453-1486.
- 6. Loriot Y, Necchi A, Park SH, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. *N Engl J Med* . 2019;381(4):338-348.
- 7. Nikiforov YE. Role of molecular markers in thyroid nodule management: then and now [published correction appears in *Endocr Pract* . 2017;23(11):1362]. *Endocr Pract* . 2017;23(8):979-988.

Related Information

Colorectal (Colon) Cancer Gastrointestinal Stromal Tumors (GISTs) Lynch Syndrome - Hereditary Nonpolyposis Colorectal Cancer (HNPCC) Non-Small Cell Lung Cancer - Non-Small Cell Lung Cancer Molecular Markers Melanoma

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108

(800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com Content Review August 2022 | Last Update August 2023