

Galactosemia (GALT) Enzyme Activity and 9 Mutations

Indications for Ordering

- Follow-up of an abnormal newborn screening test for galactosemia
- Neonatal testing for an affected individual's sibling
- Carrier testing for parents of an affected individual
- Evaluation of a patient for galactosemia

Test Description

Galactose-1-phosphate uridyltransferase (GALT) enzyme activity

• Spectrophotometric assay

GALT 9 mutations

 Polymerase chain reaction (PCR) gene amplification followed by targeted single nucleotide extension (SNE) and capillary electrophoresis to detect mutations (Q188R, S135L, K285N, T138M, L195P, Y209C, and IVS2-2 A>G) associated with classic galactosemia and two nonpathogenic variants (N314D and L218L – also known as Duarte and LA variants)

Sequencing

• Sequencing of entire *GALT* coding region, intron/exon boundaries, and partial 5'UTR

Tests to Consider

Primary test

<u>Galactosemia (GALT) Enzyme Activity and 9 Mutations</u> 0051175

 Preferred initial test for the diagnosis of classic galactosemia or carrier status

Related tests

Galactose-1-Phosphate Uridyltransferase 0080125

- GALT enzyme
- May be used as initial screening test to diagnose individuals with classic galactosemia

Galactosemia, (GALT) 9 Mutations 0051176

• Use to clarify genotype when enzyme activity is known

Galactosemia (GALT), Sequencing 2006697

 Use when GALT enzyme activity is consistent with galactosemia, and the 9 mutation panel fails to identify 2 causative mutations

Galactosemia (GALT) 9 Mutations, Fetal 0051270

- Useful for prenatal diagnosis of GALT mutation only if proband has known mutation
- Contact an ARUP genetic counselor before ordering this test for special instructions

Galactose-1-Phosphate in Red Blood Cells 0081296

 Monitor levels, response, and compliance with dietary restriction for individuals with an established diagnosis

Familial Mutation, Targeted Sequencing 2001961

 Useful when a familial mutation identifiable by sequencing is known

Disease Overview

Incidence

• 1/30,000-60,000 live births in Caucasians • Other ethnicities vary

Age of onset

- Typically asymptomatic at birth
- Develop escalating symptoms within 3-14 days of birth following exposure to a milk-based diet

Symptoms

- Most common presenting symptoms in untreated infants
 - Hepatocellular damage
 - Food intolerance
 - o Sepsis
- Other symptoms
 - o Failure to thrive
 - Lethargy
 - o Seizures
- If infant with disease is left untreated, liver and brain damage are irreversible
- Sequelae in treated affected individuals
 - Speech problems
 - o Premature ovarian insufficiency
 - o Intellectual impairment
 - Neurologic deficits
 - o Cataracts

Etiology

- Galactose-1-phosphate uridyltransferase (GALT) enzyme is one of the enzymes involved in galactose utilization
 Other enzyme deficiencies are rare
- Deficiency results in accumulation of galactose-1phosphate, galactitol, and galactonate
- Genotype/phenotype correlation helps in prognostication (GeneReviews)

Genetics

Gene - GALT

Inheritance - autosomal recessive

Penetrance – 100% for classic galactosemia

Structure/function

- Located on chromosome 9p13

 11 exons
- Encodes for GALT enzyme involved in galactose metabolism

Mutations

- Seven pathogenic alleles (G) detected with the following frequency in individuals with classic galactosemia in the U.S. (GeneReviews)
 - o Q188R 49%
 - Causal mutation in 70% of individuals of northern European descent
 - oS135L 7%
 - Causal mutation in 50% of individuals of African American descent
 - o K285N 4%
 - Predominant causal mutation in individuals of German, Austrian, and Croatian descent
 - oT138M unknown frequency
 - o L195P 2%
 - Y209C 1%
 - IVS2-2 A>G almost exclusively found in individuals of Hispanic descent
- Other frequently identified variants
 - Duarte variant (N314D) 5% of the general U.S. population
 - Associated with moderate decrease in GALT activity
 - o LA variant (N314D linked to L218L allele)
 - Associated with a mild increase in GALT expression

Test Interpretation

Galactose-1-Phosphate Uridyltransferase

Clinical sensitivity (classic galactosemia) – >99%

Results

- Individuals affected with classic galactosemia usually have
 U/g Hb
 - o Normal enzyme activity between 14.7 and 25.4 U/g Hb
- Enzyme ranges can overlap between genotypes
- Follow-up genetic testing for characterization of mutations is recommended

Galactosemia, (GALT) 9 Mutations

Clinical sensitivity (classic galactosemia) – 80% in Caucasians, but reduced in other ethnicities

Results

- Detection of 2 severe mutations (G/G)
- Classic galactosemia
 One mutation and one Duarte variant (D/G)
 - o Duarte-variant galactosemia
- One mutation (G/N)
 - o Individual is at least a carrier of classic galactosemia
 - In the presence of markedly reduced GALT activity, patient may have classic galactosemia with a mutation not detected by the 9 mutation panel
- No mutations
 - o Galactosemia or carrier status cannot be excluded
 - Refer to enzyme activity for follow-up testing

Galactosemia (GALT), Sequencing

Sensitivity/specificity

- Clinical sensitivity (classic galactosemia) 98%
- Analytical sensitivity and specificity 99%

Results

- Detection of 2 severe mutations (G/G)
 - o Classic galactosemia
- One mutation and one Duarte variant (D/G)
 - o Duarte-variant galactosemia
- One mutation (G/N)
 - o Individual is at least a carrier of classic galactosemia
 - In the presence of markedly reduced GALT activity, patient may have classic galactosemia with a mutation not detected by the 9 mutation panel
- No mutations
 - o Galactosemia or carrier status cannot be excluded
 - Refer to enzyme activity for follow-up testing

Limitations

- GALT enzyme activity ranges overlap, so mutation testing is necessary to clarify genotype
- Mutations other than the 9 GALT panel mutations specified above will not be evaluated
- Other rare forms of galactosemia caused by deficiency of galactokinase (GALK) or galactose-4 epimerase (GALE) will not be identified
- Rare diagnostic errors can occur due to primer-site mutations
- Regulatory region mutations, deep intronic mutations, and large deletions/duplications will not be detected