Ornithine Transcarbamylase Deficiency

Indications for Ordering

- Confirm diagnosis of ornithine transcarbamylase (OTC) deficiency following clinical and laboratory findings suggestive for OTC deficiency
- Determine carrier status if familial variant has previously been identified
- Early identification of disorder may allow for life-saving therapy and reduce risk of permanent neurological damage

Test Description

- Polymerase chain reaction amplification followed by sequencing for all coding regions and intron/exon boundaries of OTC gene
- Multiplex ligation-dependent probe amplification (MLPA) to detect large OTC coding region deletions/duplications

Tests to Consider

Molecular tests
Ornithine Transcarbamylase Deficiency (OTC) Sequencing and Deletion/Duplication 2004896
 - Preferred genetic test to confirm OTC deficiency, following suggestive clinical and laboratory findings

Ornithine Transcarbamylase Deficiency (OTC) Sequencing 2004901
 - Acceptable initial genetic test to confirm OTC deficiency, following suggestive clinical and laboratory findings

Biochemical tests
Initial laboratory screening tests for suspected urea cycle disorders
 - Amino Acids Quantitative by LC-MS/MS, Plasma 2009389
 - Orotic Acid and Orotidine, Urine 0092458
 - Ammonia, Plasma 0020043

Disease Overview

Incidence – 1/14,000-77,000 live births (Lichter-Konecki, 2016)

Clinical presentation

OTC deficiency
 - Males are typically affected with neonatal onset of symptoms
 - Hyperammonemia
 - Encephalopathy
 - Respiratory alkalosis
 - Seizures
 - Lethargy
 - Vomiting/feeding difficulties
 - Coma/death

Partial OTC deficiency
 - Hemizygous males with mild variants and heterozygous females may develop symptoms in infancy, childhood, adolescence, or adulthood
 - Heterozygous females with a pathogenic variant have variable presentations that range from asymptomatic to classic, life-threatening disease due to skewed X-chromosome inactivation
 - Recurrent vomiting with clinical picture resembling Reye-like syndrome
 - Neurobehavioral changes or seizures associated with hyperammonemia

Genetics

Gene – OTC

Inheritance – X-linked

Penetrance – dependent on sex of individual and gene variant
 - Hemizygous males – 100%

De novo variants – unknown

Variants – most are specific to particular families ("private variants")

Test Interpretation

Biochemical testing
 - Plasma ammonia – elevated
 - Plasma glutamine and alanine – elevated
 - Plasma citrulline and arginine – low
 - Urine orotic acid excretion – elevated
Molecular testing – OTC

Sensitivity/specificity
- Clinical sensitivity – ~90%
 - Sequencing – 80%
 - Deletion/duplication analysis – 10% (Shchelochkov, 2009; Yamaguchi, 2006)
- Analytical sensitivity/specificity – 99%

Results
- Positive
 - Pathogenic variant detected in males
 - Confirms OTC deficiency
 - Pathogenic variant detected in females
 - At least a carrier for OTC deficiency
- Negative – no variant detected
 - OTC deficiency is less likely but not excluded
- Inconclusive – variants of unknown clinical significance may be identified

Limitations
- Not determined or evaluated
 - Regulatory region and deep intronic variants
 - Breakpoints of large deletions/duplications
 - Variants in genes other than OTC
- Diagnostic errors can occur due to rare sequence variations

References