Kell Antigen (KEL) Genotyping

Indications for Ordering

- Determine fetal genotype when
 - Mother has clinically significant alloantibody AND
 - Father is either heterozygous for KEL1 (K) allele or is unavailable for testing
- Determine paternal KEL1 (K) genotype in phenotypically positive individual when reproductive partner is K negative by RBC antigen typing
- Assess risk for hemolytic transfusion reaction

Test Description

Polymerase chain reaction and fluorescent monitoring using hybridization probes to detect the c.578C>T (p.Thr193Met) variant

Tests to Consider

Primary test
Kell K/k Antigen (KEL) Genotyping 0051644
- Assess risk for alloimmune hemolytic disease of the newborn (HDN) or hemolytic transfusion reaction
- May be ordered for parental or fetal genotyping

Related test
Kell Antigen Typing – Patient 2007731
- Initial screen for K antigen status

Disease Overview

Incidence
- K positive (Moise, 2008; Dean, 2005)
 - Up to 25% in Arabs
 - 9% in Caucasians
 - 2% in African Americans
 - K homozygosity is rare
- ~4% of K negative (k/k) mothers will deliver a K positive baby with potential HDN (Moise, 2008)

Symptoms
- HDN
 - Symptoms may be seen as early as 20 weeks gestation
 - Fetal hemolytic anemia – may be severe
 - Jaundice
 - Hepatosplenomegaly
 - Erythroblastosis
 - Hydrops fetalis
- Hemolytic transfusion reaction
 - Intravascular coagulopathy
 - Renal failure
 - Uncontrolled bleeding

Physiology
- Kell blood group system is complex
- Kell locus is highly polymorphic
 - 25 Kell antigens are known
 - K and k differ by a single amino acid
 - The k antigen is more common in most populations
 - The K antigen is more likely to trigger an immune reaction
- KEL1 (K) allele
 - Presence predicts a Kell positive phenotype
 - Maternal anti-K antibodies can cause severe HDN when mother is K negative (k/k) and fetus is K positive (K/k)
 - Anti-K antibodies in blood transfusion recipient can cause severe hemolytic transfusion reaction if donor is K positive (K/K or K/k)
- KEL2 (k) allele
 - Common allele
 - Anti-k antibodies are a rare cause of HDN or hemolytic transfusion reaction

Mechanism
- Transplacentally transferred maternal antibodies attack fetal red blood cells (RBCs) in response to foreign, paternally inherited antigens
- Transfused RBCs combine with recipient’s antibodies and lead to increased destruction of RBCs
- >50% of HDN cases are due to maternal anti-K antibodies from
 - Multiple blood transfusions
 - Previous pregnancy with a K positive fetus
- Alloimmunization due to K antigen should be considered after ABO and Rh incompatibilities have been ruled out
 - Anti-K is responsible for up to 30% of antibody-mediated severe fetal anemias
Genetics

Gene – KEL

Inheritance – autosomal dominant

Variant – c.578C>T (p.Thr193Met)

Test Interpretation

Sensitivity/specificity

- Clinical sensitivity – 99% (Daniels, 2005)
- Analytical sensitivity/specificity – 99%

Results

- Kell negative (k/k)
 ▪ KEL1 allele, c.578C>T (p.Thr193Met), not detected
 ▪ Predicts K negative phenotype
- Kell positive (K/K or K/k)
 ▪ One or two copies of KEL1 allele, c.578C>T (p.Thr193Met), detected
 ▪ Predicts K positive phenotype
 ▪ Paternal homozygous (K/K) result
 ▪ Negates need for fetal KEL testing, as all offspring will be K positive

Limitations

- Tests only for KEL1 (K) and KEL2 (k) alleles
- Diagnostic errors can occur due to rare sequence variations
- Bloody amniotic fluid specimen may give false-negative result due to maternal cell contamination

References