

Glycogen Storage Disorders Panel, Sequencing

Glycogen storage diseases (GSDs) are a group of inborn errors of metabolism, typically caused by enzyme defects, resulting in a buildup of glycogen in the liver, muscles, and other organs. Specific clinical presentation and age of onset depends on the particular type of GSD; there are many types and subtypes, and other disorders may have overlapping phenotypes.

Disease Overview

Common clinical features of these disorders include:

- · Hepatomegaly
- · Poor growth or short stature
- Hypoglycemia (marked by fatigue, irritability, headaches, pallor)
- · Muscle weakness and/or pain
- Cardiomyopathy
- · Exercise intolerance
- · Liver disease (cirrhosis)

Testing Strategy

Depending on the type of GSD suspected, consideration may be given to laboratory workup that may include the following tests:

- · Serum creatine kinase
- · Blood glucose (fasting/nonfasting)
- Cholesterol
- Liver enzymes (eg, alanine transaminase [ALT] and aspartate transaminase [AST])
- Triglycerides
- Uric acid
- · Urine organic acids
- · Plasma acylcarnitines
- · Blood lactate
- Imaging studies (magnetic resonance imaging [MRI] or ultrasound)
- · Tissue biopsy

Genetics

Etiology

Pathogenic germline variants in genes associated with GSDs or related disorders (see Genes Tested table)

Featured ARUP Testing

Glycogen Storage Disorders Panel, Sequencing 3001627

Method: Massively Parallel Sequencing

Preferred molecular test to confirm or rule out a diagnosis of a GSD or related disorder following clinical and/or biochemical presentation

Inheritance

Primarily autosomal recessive (AR); rarely autosomal dominant (AD) or X-linked (XL)

Penetrance

Variable, depending on the specific type of GSD

Test Interpretation

Clinical Sensitivity

Variable, depending on the specific type of GSD

Analytic Sensitivity:

For massively parallel sequencing:

Variant Class	Analytic Sensitivity (PPA) Estimate ^a (%)	Analytic Sensitivity (PPA) 95% Credibility Region ^a (%)
SNVs	99.2	96.9-99.4
Deletions 1-10 bp	93.8	84.3-98.2
Deletions 11-44 bp	99.9	87.8-100
Insertions 1-10 bp	94.8	86.8-98.5
Insertions 11-23 bp	99.9	62.1-100

^aGenes included on this test are a subset of a larger methods-based validation from which the PPA values are derived.

Results

Result	Variant(s) Detected	Clinical Significance
Positive	One or more pathogenic or likely pathogenic variants detected	Confirms a diagnosis of heritable GSD or related disorder Specific diagnosis depends on the variant(s) detected
See note	One or more variants of uncertain significance detected	Unknown if variant(s) are disease-causing or benign
Negative	No pathogenic variants detected	Diagnosis of GSD or related disorder is less likely, though not excluded

bp, base pairs; PPA, positive percent agreement; SNVs, single nucleotide variants

Limitations

- · A negative result does not exclude a diagnosis of a GSD.
- Diagnostic errors can occur due to rare sequence variations.
- Interpretation of this test result may be impacted if this patient has had an allogeneic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of targeted gene(s)
 - Regulatory region and deep intronic variants, including GBE1 (NM_000158.4) intron 15
 - Includes an Ashkenazi Jewish founder mutation in GBE1 (HGMD ID: CX153579)
 - Noncoding transcripts
 - The following exons are not sequenced due to technical limitations of the assay:
 - ENO3 (NM_001374524) exon(s) 1
 - OXCT1 (NM_001364299) exon(s) 5
 - OXCT1 (NM_001364300) exon(s) 1
 - OXCT1 (NM_001364303) exon(s) 1
 - PFKM (NM_001354735) exon(s) 4
 - PFKM (NM_001354736) exon(s) 4
 - PFKM (NM_001354740) exon(s) 1
 - PFKM (NM_001354741) exon(s) 2
 - Large deletions/duplications in any of the tested genes
- The following may not be detected:
 - o Deletions/duplications/insertions of any size by massively parallel sequencing
 - · Some variants due to technical limitations in the presence of pseudogenes, repetitive, or homologous regions
 - Low-level somatic variants

Genes Tested

Gene	MIM #	Disorder	Inheritance
ACAT1	607809	Alpha-methylacetoacetic aciduria	AR
AGL	610860	GSD IIIa	AR
		GSD IIIb	AR
ALDOA	103850	GSD XII	AR
ALDOB	612724	Hereditary fructose intolerance	AR
CPT2	600650	Carnitine palmitoyltransferase II deficiency	AD, AR
ENO3	131370	GSD XIII	AR
FBP1	611570	Fructose-1, 6-bisphosphatase deficiency	AR
G6PC	613742	GSD la	AR
GAA	606800	GSD II (Pompe disease)	AR

GBE1 607834 GYG1 603945 GYS1 138576	GSD XV GSD 0, muscle	AR AR AR
<i>GYS1</i> 138570	GSD 0, muscle	
		AR
OV02 120E7	OOD O liver	
<i>GYS2</i> 13857	GSD 0, liver	AR
LAMP2 30906	Danon disease	XL
LDHA 15000	GSD XI	AR
NHLRC1 60807	Myoclonic epilepsy of Lafora	AR
OXCT1 60142	Succinyl-CoA:3-oxoacid CoA transferase deficiency	AR
<i>PFKM</i> 61068	GSD VII	AR
<i>PGAM2</i> 61293	GSD X	AR
<i>PGK1</i> 31180	Phosphoglycerate kinase 1 deficiency	XL
<i>PGM1</i> 17190	Congenital disorder of glycosylation type It	AR
PHKA1 31187	GSD IXd	XL
PHKA2 30079	GSD IXa1	XL
	GSD IXa2	XL
PHKB 17249	GSD IXb	AR
PHKG2 17247	GSD IXc	AR
PRKAG2 60274	Hypertrophic cardiomyopathy 6	AD
	GSD of heart	AD
	Wolff-Parkinson-White syndrome	AD
<i>PYGL</i> 61374	GSD VI	AR
PYGM 60845	GSD V (McArdle disease)	AR
RBCK1 61092	Polyglucosan body myopathy 1	AR

Gene	MIM #	Disorder	Inheritance
SLC16A1	600682	Erythrocyte lactate transporter defect;	AD
		Familial hyperinsulinemic hypoglycemia 7	AD
		Monocarboxylate transporter 1 deficiency	AD, AR
SLC2A2	138160	Fanconi Bickel syndrome	AR
SLC37A4	602671	GSD lb	AR
		GSD Ic	AR

Additional Resources

Chen MA, Weinstein, DA. Glycogen storage diseases: diagnosis, treatment and outcome. IOS Press. 2016;1:45-72.

Hicks J, Wartchow E, Mierau G. Glycogen storage diseases: a brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. *Ultrastruct Pathol*. 2011;35(5):183-196.

Martiniuk F, Chen A, Mack A, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. *Am J Med Genet* . 1998;79(1):69-72.

Santalla A, Nogales-Gadea G, Encinar AB, et al. Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics. 2017;18(Suppl 8):819.

Scriver CR, Beaudet AS, Sly WS, et al, eds. The Metabolic and Molecular Basis of Inherited Disease. 8th ed. McGraw-Hill; 2001.

Stone WL, Basit H, Adil A. Glycogen storage disease. In: StatPearls. StatPearls Publishing; 2021. [Updated: Jun 2021; Accessed: Aug 2021]

Related Information

Ashkenazi Jewish Genetic Diseases Ashkenazi Jewish Genetic Diseases Panel

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 (800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com

Content Review August 2021 | Last Update August 2023