KIT Molecular Testing

Indications for Ordering
Provide diagnostic, prognostic, and predictive information for
- Acute myeloid leukemia (AML) associated with inv(16) or t(8;21)
- Also known as core-binding factor (CBF) AML
- Mastocytosis
- Gastrointestinal stromal tumors (GIST)
- Melanoma

Test Description
KIT Mutations in AML by Fragment Analysis and Sequencing
- Polymerase chain reaction (PCR)/fragment analysis/sequencing
- Capillary electrophoresis to detect insertions/deletions on exon 8
- Sequencing of exon 17

KIT (D816V) Mutation by PCR
- PCR
- Allele specific PCR of exon 17

Gastrointestinal Stromal Tumor Mutation
- PCR/sequencing
 - KIT – exons 9, 11, 13, 14, 17, 18
 - PDGFRA – exons 12, 14, 18

KIT Mutations, Melanoma
- PCR/sequencing
 - KIT – exons 9, 11, 13, 14, 17, 18
 - PDGFRA – exons 12, 14, 18

Tests to Consider
Primary tests
- **KIT Mutations in AML by Fragment Analysis and Sequencing 2002437**
 - Prognostication in CBF AML
- **KIT (D816V) Mutation by PCR 3000440**
 - Aid in the diagnosis of mastocytosis
 - Provide prognostic and predictive information for tyrosine kinase inhibitor (TKI) therapy planning
- **Gastrointestinal Stromal Tumor Mutation 2002674**
 - Detect activating mutations in KIT and PDGFRA
 - Predict response to TKI therapy
- **KIT Mutations, Melanoma 2002695**
 - Detect activating mutations in KIT and PDGFRA
 - Predict response to TKI therapy

Related tests
Myeloid Malignancies Mutation Panel by Next Generation Sequencing 2011117
- Assess for single gene mutations, including substitutions and insertions and deletions, that may have diagnostic, prognostic, and/or therapeutic significance

Acute Myeloid Leukemia Panel by FISH 2011132
- Identify prognostically important abnormalities in newly diagnosed AML
- Monitor response to therapy with specific probes (CHR FISH) or progression of disease with probe panel

Eosinophilia Panel by FISH 2002378
- Identify prognostically important inv(16) in AML associated with eosinophilia

CD117 (c-Kit) by Immunohistochemistry 2003806
- Initial screening test when GIST is suspected based on histology and location of tumor

DOG1 by Immunohistochemistry 2010168
- Screening test in tumor that is morphologically and clinically suspicious for GIST when CD117 is negative

BRAF Codon 600 Mutation Detection by Pyrosequencing 2002498
- Detect activating BRAF mutations at codon 600
 - Can indicate responsiveness to BRAF inhibitors in melanomas

BRAF V600E Mutation Detection in Circulating Cell-Free DNA by Digital Droplet PCR 2013921
- Determine BRAF V600E mutation status in patients with solid tumors to select candidates for targeted therapy with kinase inhibitors (BRAF and/or MEK)
- Monitor response to therapy and disease progression in patients carrying BRAF V600E mutation
Test Interpretation

KIT Mutations in AML by Fragment Analysis and Sequencing

Analytical sensitivity
- Detects mutations in exon 17 in specimens with at least 30% AML cells carrying the mutation
- Detects mutations in exon 8 in specimens with at least 5% AML cells carrying the mutation

Results
- Detected – KIT exon 8 or 17 mutation
 - Associated with less favorable outcome
 - TKIs may be useful in conjunction with standard chemotherapy
- Not detected – no mutation in KIT exon 8 or 17

Limitations
- Not intended to detect minimal residual disease
- Mutations outside of exons 8 and 17 are not detected
- Mutations below analytical sensitivity will not be detected

KIT (D816V) Mutation by PCR

Sensitivity
- Clinical – occurs in >80% of systemic mastocytosis (SM) cases
- Analytical – 0.3% allelic burden

Results
- Detected – KIT (D816V) point mutation
 - Supports a diagnosis of SM or SM-associated clonal hematologic non-mast cell lineage disease (AHNMD) in the correct clinical context
 - Therapeutic implications
 - Imatinib – ineffective if mutation is present
 - Dasatinib and Nilotinib – uncertain clinical efficacy
- Not detected – no KIT (D816V) point mutation

Limitations
- Mutations other than the D816V mutation are not detected, including other D816 variants
- Mutations below analytical sensitivity will not be detected

Gastrointestinal Stromal Tumor Mutation

Sensitivity
- Clinical – mutations detected in >85% of GISTs (~70% KIT and ~15% PDGFRA)
- Analytical – 25% mutant alleles (50% tumor)

Results
- Detected – KIT mutation detected in exons 9, 11, 13, 14, 17, 18
 - Exon 9
 - Requires an escalated dose of TKI for response
 - Better response to sunitinib than imatinib
 - Exon 11
 - Associated with TKI sensitivity
 - Exon 13
 - Primary (nontherapy associated) – associated with TKI sensitivity
 - Secondary (acquired during therapy) – associated with TKI resistance
 - Exon 14
 - Secondary (acquired during therapy) – associated with TKI resistance
 - Exon 17
 - D816V – associated with TKI resistance
 - Primary – associated with TKI sensitivity
 - Secondary – associated with TKI resistance
 - Exon 18 (D842V and D846V) – associated with TKI resistance
- Detected – PDGFRA mutation detected in exons 12, 14, 18
 - Exon 12 – associated with TKI sensitivity
 - Exon 14 – associated with TKI sensitivity
 - Exon 18 (D842V and D846V) – associated with TKI resistance
- Normal – no mutations detected in KIT or PDGFRA (wild type GISTs)
 - Associated with indolent course if succinate-dehydrogenase (SDH)-deficient GIST
 - Associated with resistance to most TKIs
 - No response to sunitinib

Limitations
- Mutations outside of targeted exons are not detected
- Test alone cannot be used for diagnosis of malignancy

KIT Mutations, Melanoma

Analytical sensitivity – 25% mutant alleles (50% tumor)

Results
- Detected – KIT and PDGFRA mutations
 - TKI sensitivity will be interpreted by a pathologist
- Normal – no mutations detected in the designated exons

Limitations
- Mutations outside of targeted exons are not detected
Disease Overview

CBF AML
- *KIT* mutation testing is important for prognostication
 - *KIT* mutations are associated with higher incidence of relapse and lower survival
- *KIT* mutations may be detected in
 - inv(16) or t(16;16) AML
 - t(8;21) AML

Mastocytosis
- *KIT* mutation testing is important for
 - Diagnosis (presence of mutation is a minor criteria for SM)
 - Prediction of response to TKI therapy

GIST
- *KIT* mutation testing is important for
 - Prediction of response to TKI therapy
- Majority of GISTs express the c-kit protein (CD117) which is detectable by immunohistochemistry (IHC)
 - Staining for CD117 – excellent initial screen when histology and tumor location suggest GIST
 - Positive IHC stain – order *KIT* mutation testing
 - Limitations of IHC staining
 - GISTs with *PDGFRA* mutation may have weak KIT IHC staining
 - Does not identify type of mutation, which is crucial for predicting responsiveness to TKI therapy
- Staining for DOG1 – most useful in tumors that stain negative for CD117
 - Does not identify type of mutation, which is crucial for predicting responsiveness to TKI therapy
- ~8% of GISTs have mutations in *PDGFRA*
 - *PDGFRA* and *KIT* mutations are mutually exclusive
 - Majority occur in gastric GIST with epithelioid morphology and weak or negative CD117
- SDH-deficient GISTs account for about half of wild type GISTs (negative for *KIT* and *PDGFRA* mutations)
 - Will stain negatively for SDHB

Melanoma
- *KIT* mutation testing
 - Important for determining targeted therapy which may be used in disseminated disease
 - Choice of therapy based on presence of gene mutations – *BRAF, KIT, PDGFRA* (rare)
 - Required to identify mutation
 - *KIT* (CD117) IHC staining does not reliably predict mutation status or sensitivity to TKIs
- TKIs are most useful therapy when TKI-sensitive exon mutation is present
 - Current drug of choice is imatinib mesylate (Gleevec)
- *KIT* mutation
 - Less common than *BRAF* in melanoma
 - Most common in acral and mucosal subtypes

Genetics

Gene – KIT

Structure/function
- Maps to 4q12
- Receptor tyrosine kinase (type III)
 - Important in hematopoiesis for regulation of cell proliferation and maturation

Mutations
- A variety of >500 mutations have been described, most commonly in
 - Juxtamembrane region (exon 11)
 - Extracellular region (exon 9)
 - Kinase domain (exons 13, 17)
- **CBF AML**
 - Detected in ~30% of AML with inv(16)
 - Detected in 20-25% of AML with t(8;21) (particularly the D816V mutation)
- **Mastocytosis**
 - Adults
 - D816V mutation detected in 95%
 - Rare juxtamembrane mutations
 - Children
 - D816V mutation detected in 30-40%
 - ~40% carry *KIT* mutations that reside outside exon 17 (mainly exons 8 and 9)
 - In SM with an associated clonal hematological nonmast cell lineage disease (SM-AHNMD), mutations other than D816V may be detected
- **GIST**
 - Most commonly located in exon 11
 - Acquired mutations during TKI therapy cluster in exons 13, 14, 17
 - Less common mutations – exons 9, 13, 17, 18
 - Exon 17 D816V mutation rarely seen in GIST; common in other malignancies
- **Melanoma**
 - Most commonly located in exon 11 and less commonly in exons 13, 17, 18
 - Associated with TKI sensitivity
 - Mutation prevalence (Grossmann, 2012)
 - Mucosal melanoma – 6-19%
 - Acral lentiginous melanoma – 11-38%
 - Chronically sun damaged – 17%
 - *KIT* mutations in exons 11 and 13 generally have a favorable response to imatinib
 - *PDGFRA* mutations in exons 12, 14, 18 may be associated with TKI response

References