

Juvenile Polyposis SMAD4 and BMPR1A Sequencing and Deletion/Duplication

Indications for Ordering

SMAD4 Sequencing and Deletion/Duplication

- Confirm a diagnosis of juvenile polyposis syndrome (JPS) or JPS/ hereditary hemorrhagic telangiectasia (HHT) syndrome in symptomatic individuals
- Confirm a diagnosis of HHT in symptomatic individuals if no variant was previously detected in the ENG and ACVRL1 genes by sequencing and deletion/duplication

BMPR1A Sequencing and Deletion/Duplication

Confirm a diagnosis of JPS syndrome in symptomatic individuals

Contraindications for ordering

- Do not use for presymptomatic or diagnostic testing when a causative BMPR1A or SMAD4 variant has previously been identified in the family
 - To test individuals for a specific variant, use the more cost-effective Familial Mutation, Targeted Sequencing test and provide a copy of the lab report detailing the familial variant
- BMPR1A testing should not be ordered for HHT

 Gene is not causative for HHT or JPS/HHT
- Do not use for prenatal testing

Test Description

- Polymerase chain reaction/bidirectional sequencing of the entire SMAD4 and BMPR1A coding regions and intron/exon borders
- Multiplex ligation-dependent probe amplification for large deletion/duplication analysis

Tests to Consider

Primary tests

<u>Juvenile Polyposis (SMAD4) Sequencing and</u> Deletion/Duplication 2001971

Diagnostic and predictive testing for JPS or JPS/HHT

<u>Juvenile Polyposis Syndrome (BMPR1A) Sequencing and Deletion/Duplication 2004992</u>

• Diagnostic and predictive testing for JPS

Related tests

Juvenile Polyposis (SMAD4) Sequencing 0051510

• Diagnostic and predictive testing for JPS or JPS/HHT

Juvenile Polyposis Syndrome (BMPR1A) Sequencing 2004988

Diagnostic and predictive testing for JPS

Familial Mutation, Targeted Sequencing 2001961

 Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

Prevalence

- JPS 1/16,000-100,000
- JPS/HHT unknown

Symptoms

JPS

- Multiple juvenile (hamartomatous) polyps in the stomach, small intestine, colon, and rectum
 - o "Juvenile" refers to particular type of hamartomatous polyp, not age of onset
- Onset varies from childhood to middle age
 By age 20, most affected individuals have some polyps
- Gastrointestinal (GI) tract cancer risk estimates
 ~20% by 35 years
 - o Approaches 70% by 60 years

HHT

- Recurrent nosebleeds
- Telangiectases (mouth, face, hands, GI tract)
- Brain, lung, and liver arteriovenous malformations
 Brain arteriovenous malformations are congenital and are at risk to bleed during infancy and early childhood

JPS/HHT

• Characterized by manifestation of both JPS and HHT

Diagnostic issues

DNA testing recommended for individuals with at-risk relatives

- In infancy for JPS/HHT
- By 15 years for JPS

Screening and medical management issues

- Screening/detection
 - Individuals with a variant in either gene should begin GI tract screening by 15 years
 - CBC
 - Colonoscopy (lower endoscopy)
 - Upper endoscopy
 - o Screening should begin earlier if rectal bleeding, anemia, abdominal pain, constipation, or diarrhea occur
- Disease management
- Usually involves routine endoscopy with removal of polyps to reduce risk of bleeding, obstruction, and cancer
- Occasionally, large numbers of polyps may necessitate removal of a portion of the stomach or intestine

Genetics

Genes - SMAD4, BMPR1A

Inheritance – autosomal dominant for JPS and JPS/HHT syndrome

Penetrance – germline JPS variants predicted to be >90% for polyp development

De novo variants - 25% of JPS cases

Test Interpretation

Sensitivity/specificity

- Clinical sensitivity
 - \circ SMAD4 or BMPR1A variants are causative for ~50% of JPS
 - 28% of individuals with JPS have SMAD4 variants
 - 21% detectable by sequencing (Aretz, 2007; Calva-Cerqueira, 2009; van Hattem, 2008)
 - 7% detectable by large deletion/duplication analysis (Aretz, 2007; Calva-Cerqueira, 2009; van Hattem, 2008)
 - o 20-25% of patients with JPS have *BMPR1A* variants (Howe, 2004; Sayed, 2002)
 - ~18% detectable by sequencing (Aretz, 2007; Calva-Cerqueira, 2009; Calva-Cerqueira, 2010; van Hattem, 2008)
 - ~4% detectable by large deletion/duplication analysis (Aretz, 2007; Calva-Cerqueira, 2009; van Hattem, 2008)
 - o JPS/HHT syndrome
 - Nearly 100% of individuals have a variant in SMAD4
 - ~95% detectable by sequencing
 - ~5% detectable by large deletion/duplication analysis
 - o SMAD4 variants are causative for ~1-3% of HHT (Prigoda, 2006)
- Analytical sensitivity/specificity for sequencing and MLPA for SMAD4 and BMPR1A – 99%

Results

- Positive pathogenic variant detected
 Predicted to cause JPS, JPS/HHT, or HHT
- Negative no pathogenic variant detected
 - o Does not rule out JPS, JPS/HHT, or HHT due to possibility of undetectable *SMAD4* or *BMPR1A* variants
- Medical management of patient should rely on clinical findings and family history
- Uncertain
 - o Gene variant detected, but whether variant is benign or pathogenic is unclear
 - Medical management of patient should rely on clinical findings and family history
- Juvenile Polyposis Patient History Form documenting patient symptoms and family history of both JPS and HHT is required with specimen submission for optimal test interpretation

Limitations

- · Not determined or evaluated
 - o Regulatory region or deep intronic variants
 - o Breakpoints of large deletions/duplications
- o Variants in genes other than SMAD4 or BMPR1A
- Large deletions/duplications of exons 7 and 8 in BMPR1A gene may not be detected
- Diagnostic errors can occur due to rare sequence variations

References

- Aretz S, Stienen D, et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44:702-709
- Calva-Cerqueira D, Dahdaleh FS, et al. Discovery of the BMPR1A promoter and germline mutations that cause juvenile polyposis. Hum Mol Genet. 2010;19:4654-4662
- Calva-Cerqueira D, Chinnathambi S, et al. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet. 2009;75:79-85
- Howe JR, Sayed MG, et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet. 2004;41:484-491
- Prigoda, N. L., et al. Hereditary Haemorrhagic
 Telangiectasia: Mutation Detection, Test Sensitivity and Novel Mutations. J Med Genet. 2006;43(9):722-728
- Sayed MG, Ahmed AF, et al. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002;9:901-906
- van Hattem WA, Brosens LA, et al. Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut. 2008;57:623-627