Platelet Antigens (HPA-1 to HPA-6 and HPA-15) Genotyping

Indications for Ordering

Fetal or neonatal testing when
- Parents have had a prior affected pregnancy
- Unexplained intracranial hemorrhage is detected

Maternal and paternal testing when
- Fetus or neonate is suspected to have neonatal alloimmune thrombocytopenia (NAIT)
 - Also referred to as perinatal alloimmune thrombocytopenia (PAT)

Women
- Planning a pregnancy who have a sister with a previously affected pregnancy
- With posttransfusion purpura

Test Description

Multiplex polymerase chain reaction (PCR) followed by allele-specific primer extension using fluorescence to detect human platelet antigen (HPA) alleles
- HPA-1 (*ITGB3*): c.176T>C, p.L59P
- HPA-2 (*GP1BA*): c.482C>T, p.T161M
- HPA-3 (*ITGA2B*): c.2621T>G, p.I874S
- HPA-4 (*ITGB3*): c.506G>A, p.R169Q
- HPA-5 (*ITGA2*): c.1600G>A, p.E534K
- HPA-6 (*ITGB3*): c.1544G>A, p.R515Q
- HPA-15 (*CD109*): c.2108C>A, p.S703Y

Tests to Consider

Primary test
Platelet Antigen Genotyping Panel 0051308
- Use in risk assessment for NAIT
- May be ordered for parental, fetal, or neonatal genotyping

Related tests
- Platelet Antigen 1 Genotyping (HPA-1) 0051309
- Platelet Antigen 2 Genotyping (HPA-2) 0051310
- Platelet Antigen 3 Genotyping (HPA-3) 0051311
- Platelet Antigen 4 Genotyping (HPA-4) 0051490
- Platelet Antigen 5 Genotyping (HPA-5) 0051312
- Platelet Antigen 6 Genotyping (HPA-6) 0051313
- Platelet Antigen 15 Genotyping (HPA-15) 0051314
- Platelet Antibodies, Indirect 0051050

Disease Overview

Incidence – NAIT is the most common cause of severe thrombocytopenia in healthy term neonates and occurs in 1/1,000-5,000 births
- 80% of NAIT in Caucasians is caused by maternal antibodies directed against HPA-1a and ~20% by antibodies directed against HPA-5b
- Posttransfusion purpura occurs in 1/50,000-100,000 transfusions

Symptoms
- Severe thrombocytopenia in an otherwise healthy newborn
- Intracranial hemorrhage – may occur in utero, at birth, or postnatally
 - Fatal in 5-10% of affected neonates
 - May cause intellectual disability, seizures, cerebral palsy, or cortical blindness in up to 25% of survivors
- Widespread petechiae or purpura
- Visceral hemorrhage – often of gastrointestinal or bladder mucosa

Diagnostic issues
- Maternal immunization against fetal platelet alloantigens may result in NAIT
 - NAIT occurs when maternal IgG antibodies, directed toward paternally derived fetal alloantigens on platelets, are transferred across the placenta
- Because prenatal platelet typing is not routinely performed, at-risk women are only identified after having an affected pregnancy
- Recurrence rate is up to 90% and severity may increase in subsequent pregnancies
- Posttransfusion purpura is most common in women who are HPA-1a negative and immunized during a previous pregnancy
- Clinical correlation between antibody titers and NAIT occurrence is not reliable
- Specific paternal platelet antigens are demonstrated to react with alloantibodies in only 50% of cases
 - Genotyping allows for more accurate risk assessment and better pregnancy management
• Testing may be helpful to
 o Screen for neonatal immunization during pregnancy
 when parents had prior affected pregnancy or when
 unexplained intracranial hemorrhage is detected
 o Assess risk of NAIT in future pregnancies
 o Assess risk of posttransfusion purpura and
 thrombocytopenia

Genetics

Gene – HPA genes (GP1BA, ITGA2B, ITGB3, ITGA2, and CD109)

Variants

~24 different types of platelet-specific alloantigens have been
identified
• The more common allele is designated as “a”; the less
 common allele is known as “b”
 o 2% of Caucasian women are homozygous for HPA-1b
 ▪ These women are at risk for alloimmunization during
 pregnancy if partner is homozygous HPA-1a or
 heterozygous HPA-1a/b and contributes the HPA-1a
 allele to the fetus

Legacy names

• HPA-1: GPIIIa
• HPA-2: GP Ibα
• HPA-3: GPIIb
• HPA-4: GPIIIa
• HPA-5: GPIa
• HPA-6: GPIIIa
• HPA-15: CD109

Test Interpretation

Sensitivity/specificity
• Clinical sensitivity/specificity — variable
• Analytical sensitivity/specificity — 99%

Results
• HPA-a/a homozygous
 o 2 copies of the common “a” allele
• HPA-a/b heterozygous
 o 1 copy of the common “a” allele and 1 copy of the less
 common “b” allele
• HPA-b/b homozygous
 o 2 copies of the less common “b” allele

Limitations
• HPA genes and variants, other than the ones tested, will
 not be detected
• Bloody amniotic fluid specimens may give false-negative
 results due to maternal cell contamination
• Diagnostic errors can occur due to rare sequence
 variations

References

• Espinoza JP, Caradeux J, et al. Fetal and neonatal
 2013;6(1):e15-e21
• Bertrand G, Kaplan C. How do we treat fetal and neonatal
 alloimmune thrombocytopenia? Transfusion.
 2014;54(7):1698-1703
• Mella MT, Eddleman KA. Neonatal alloimmune
 thrombocytopenia. Intern J Clin Trans Med. 2015;3;29-40
 platelet antigens. Vox Sanguinis. 2003;85(3);240-245
• Metcalfe P. Platelet antigens and antibody detection. Vox
 Sanguinis. 2004;87(Suppl 1);S82-S86