Paroxysmal Nocturnal Hemoglobinuria (PNH) is a rare hemolytic disorder caused by nonmalignant clonal expansion of one or more stem cell lines due to an acquired mutation in the *PIGA* gene. PNH is associated with intravascular hemolysis, thrombotic complications, and bone marrow failure.

TYPICAL TESTING STRATEGY

- **Initial testing includes:**
 - Complete blood count with peripheral smear
 - Reticulocyte count
 - Direct Coombs test
 - Serum lactate dehydrogenase
 - Indirect bilirubin
 - Serum haptoglobin
- **Diagnostic testing (if suspicion exists based on primary tests) should include flow cytometry of both white blood cells (WBCs) and red blood cells (RBCs)**
- **Flow cytometry testing of WBCs and/or RBCs may be used in therapeutic monitoring**
 - Ham and sugar water tests are no longer used; do not order

Incidence

1.3/million

Symptoms

- Hemolysis
 - Symptoms include dysphagia, lethargy, renal failure, anemia, hemoglobinuria, male impotence, pulmonary hypertension
- Thrombophilia
 - Potentially life-threatening
 - Thromboses located at unusual sites (eg, hepatic portal)
- Bone marrow (BM) failure
 - May present as severe aplastic anemia

Physiology

- PNH is caused by a somatic mutation of *PIGA* gene which results in deficiency or absence of glycosylphosphatidylinositol (GPI)-anchored cell membrane proteins on progeny of affected stem cells
 - Lack of CD55 and CD59 causes RBC sensitivity to complement lysis
 - Pathophysiology of thrombophilia and bone marrow failure in PNH is unknown
- Percentage of RBCs or WBCs that entirely or partially lack GPI-linked antigens is referred to as PNH clone size
 - **Type I:** normal levels of CD59
 - **Type II:** reduced levels of CD59
 - **Type III:** absent levels of CD59

Related Tests

- **Paroxysmal Nocturnal Hemoglobinuria, High Sensitivity, RBC and WBC 2005006**
 - Method: Quantitative Flow Cytometry
 - Preferred test for initial diagnosis of PNH and quantification of PNH clones
 - Includes high-sensitivity WBC and RBC analysis

- **Paroxysmal Nocturnal Hemoglobinuria, High Sensitivity, WBC 2005003**
 - Method: Quantitative Flow Cytometry
 - Quantify or monitor PNH clone

Indications for Ordering

Diagnose PNH in patients with

- Unexplained hemoglobinuria
- Coombs-negative hemolytic anemia
- Unusual thrombotic sites (eg, Budd-Chiari, cerebral)
- Thrombosis combined with intravascular hemolysis or cytopenias
- Aplastic or hypoplastic anemia

Monitor individuals with confirmed PNH

- **Incidence**
 - 1.3/million

- **Symptoms**
 - Hemolysis
 - Symptoms include dysphagia, lethargy, renal failure, anemia, hemoglobinuria, male impotence, pulmonary hypertension
 - Thrombophilia
 - Potentially life-threatening
 - Thromboses located at unusual sites (eg, hepatic portal)
 - Bone marrow (BM) failure
 - May present as severe aplastic anemia

- **Physiology**
 - PNH is caused by a somatic mutation of *PIGA* gene which results in deficiency or absence of glycosylphosphatidylinositol (GPI)-anchored cell membrane proteins on progeny of affected stem cells
 - Lack of CD55 and CD59 causes RBC sensitivity to complement lysis
 - Pathophysiology of thrombophilia and bone marrow failure in PNH is unknown
 - Percentage of RBCs or WBCs that entirely or partially lack GPI-linked antigens is referred to as PNH clone size
 - **Type I:** normal levels of CD59
 - **Type II:** reduced levels of CD59
 - **Type III:** absent levels of CD59

- **Tests to Consider**
 - **Paroxysmal Nocturnal Hemoglobinuria (PNH), High Sensitivity, RBC and WBC 2005006**
 - Method: Quantitative Flow Cytometry
 - Preferred test for initial diagnosis of PNH and quantification of PNH clones
 - Includes high-sensitivity WBC and RBC analysis
 - **Paroxysmal Nocturnal Hemoglobinuria, High Sensitivity, WBC 2005003**
 - Method: Quantitative Flow Cytometry
 - Quantify or monitor PNH clone
Analytical Sensitivity

Limits of detection:
- RBCs: 0.005%
- Polymorphonuclear neutrophils (PMNs or granulocytes): 0.005%
- Monocytes: 0.020%

Results

<table>
<thead>
<tr>
<th>Results</th>
<th>Cells Detected</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>PNH cells: ≥1% in RBCs and WBCs</td>
<td>Indicates PNH</td>
</tr>
<tr>
<td></td>
<td>RBC PNH cells: ≥0.005% to <1%</td>
<td>Indicates subclinical PNH</td>
</tr>
<tr>
<td></td>
<td>WBC (PMN) PNH cells: ≥0.005% to <1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocyte PNH cells: ≥0.020% to <1%</td>
<td>Often associated with symptoms of bone marrow failure</td>
</tr>
<tr>
<td>Negative</td>
<td>PNH cells: not detected</td>
<td>Reduces, but does not eliminate the probability of PNH</td>
</tr>
</tbody>
</table>

Limitations
- Conditions that may compromise accuracy include significant neutropenia, gross hemolysis, and specimens that lack expression of CD15, CD64, or glycophorin A
- Recent RBC transfusions may decrease percentage of PNH cells measured in RBCs

REFERENCES

RELATED INFORMATION

Paroxysmal Nocturnal Hemoglobinuria - PNH