PTEN-Related Disorders

Indications for Ordering

- Confirm clinical diagnosis of PTEN hamartoma tumor syndrome (PHTS)
- Determine if at-risk family members have a PTEN variant when a familial variant is unknown and affected relatives are unavailable for testing

Test Description

- Polymerase chain reaction and bidirectional sequencing of PTEN coding regions, intron/exon boundaries, and promoter (600 bp region745 bp upstream of translation start codon)
- Multiplex ligation-dependent probe amplification of PTEN coding regions

Tests to Consider

Primary tests

PTEN-Related Disorders (PTEN) Sequencing and Deletion/Duplication 2002470
- Preferred initial diagnostic and predictive test for PTEN-related disorders

PTEN-Related Disorders (PTEN) Sequencing 2002722
- Acceptable initial diagnostic and predictive test for PTEN-related disorders

Related test

Familial Mutation, Targeted Sequencing 2001961
- Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

Prevalence

- Cowden syndrome (CS) – at least 1/200,000
- Proteus syndrome (PS) – rare
 - ~120 reported cases
- Other PTEN-associated conditions – unknown

Symptoms

- Germline variants in PTEN gene cause several syndromes collectively referred to as PHTS
 - Associated disorders include
 - CS
 - Bannayan-Riley-Ruvalcaba syndrome (BRRS)
 - PS
 - Proteus-like syndrome (PLS)

For disease descriptions, see table below

- Established practice guidelines for tumor surveillance should be followed for individuals with an identified germline PTEN variant or suspected clinical diagnosis of a PTEN-related syndrome

Genetics

Gene – PTEN

Inheritance – autosomal dominant

Penetration

CS – 99% by age 30

De novo variants – all cases of PS and 50-90% of CS

Variants

- Some variants may be associated with multiple phenotypes
- Type of variant detected may differ by phenotype
- Promoter variants
 - ~10% of individuals with CS do not have a PTEN sequence variant (Zhou, 2003)
 - Have not been identified in patients with BRRS
- Large deletions
 - 10% of individuals with BRRS do not have a PTEN sequence variant (Zhou, 2003)
 - Rare in CS
- Exon location
 - 65% of variants causing CS occur in exons 1-5 or the promoter
 - 60% of variants causing BRRS occur within exons 6-9
Test Interpretation

Sensitivity/specificity

- Clinical sensitivity
 - 25-85% for CS in individuals meeting strict diagnostic criteria (Marsh, 1998; Tan 2011)
 - 65% for BRRS (Marsh, 1998; Zhou, 2003)
 - 20% for PS (Zhou, 2001)
 - 50% for PSL (Zhou, 2001)
 - Up to 20% for autism spectrum disorder with significant macrocephaly (Butler, 2005)

- Analytical sensitivity/specificity
 - Sequencing – 99%
 - MLPA – 90% and 98% respectively

Results

- Positive – pathogenic variant in PTEN was identified
 - Confirms diagnosis of PHTS
- Negative – no variant detected
 - Decreases, but does not exclude, the probability of a PTEN-related disorder

- Sequence variants of unknown clinical significance may be detected

Limitations

- Deep intronic variants and some regulatory region variants are not detected
- Large deletions/duplications of exon 3 may not be detected
- Breakpoints for large deletions/duplications will not be determined
- Diagnostic errors can occur due to rare sequence variations

References

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Age of onset</th>
<th>Diagnostic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>By late 20s</td>
<td>Pathognomonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adult-onset Lhermitte-Duclos disease (cerebellar tumors)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mucocutaneous lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Facial trichilemmomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Palmoplantar keratoses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Oral mucosal papillomatosis in combination with trichilemmomas/keratoses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Macrocephaly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Breast cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nonmedullary thyroid cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Endometrial cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Thyroid lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Intellectual disability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fibrocystic breast disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GI hamartomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Uterine fibroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lipomas/fibromas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GU malformations/tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor Risks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Breast disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Benign disease – up to 67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Breast cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lifetime risk – 25-85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Average age at diagnosis – 38-46 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Thyroid disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Benign – thyroid nodules, adenomas, goiter in up to 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nonmedullary thyroid cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lifetime risk – ~35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Childhood onset has been reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Endometrial disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Benign disease – uterine fibroids common</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Endometrial cancer – lifetime risk of ~25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Gastrointestinal disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Benign – >90% with polyps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Colorectal cancer – lifetime risk of ~9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Renal disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Renal cell carcinoma – ~35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Melanoma – lifetime risk of >5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Brain tumors – occasional</td>
</tr>
<tr>
<td>Syndrome</td>
<td>Age of onset</td>
<td>Diagnostic Criteria</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| BRRS | Birth to early childhood | • Diagnostic criteria not set but heavily based on the following
 o Macrocephaly
 o Intestinal hamartomas
 o Polyposis
 o Lipomas
 o Hemangiomas
 o Pigmented lesions of the glans penis | • Same cancer risks as CS if PTEN variant present |
| BRRS | Birth to early childhood | • Additional
 o High birth weight
 o Developmental delay
 o Intellectual disability
 o Proximal myopathy
 o Joint hyperextensibility
 o Pectus excavatum
 o Scoliosis | |
| PS | Infancy | • Major
 o Mosaic distribution of lesions
 o Progressive course
 o Sporadic occurrence
 • Additional
 o Connective tissue nevi
 o Epidermal nevus
 o Disproportionate overgrowth in limbs, skull, vertebrae, viscera
 o Specific tumors before end of second decade
 ▪ Bilateral ovarian cystadenoma
 ▪ Parotid monomorphic adenoma
 o Dysregulated adipose tissue
 o Vascular malformations – capillary, venous and/or lymphatic
 o Facial phenotype
 ▪ Dolichocephaly
 ▪ Long face
 ▪ Low nasal bridge
 ▪ Wide or anteverted nares
 ▪ Open mouth at rest
 ▪ Minor downslanting of palpebral fissures | • Tumors and malignancies are not common
 • Reported
 o Cystadenoma of the ovary
 o Testicular tumors
 o Central nervous system tumors
 o Parotid monomorphic adenomas |
| PLS | Infancy | Clinical features of PS which do not meet diagnostic criteria for PS | |