Primary Antibody Deficiency Panel

Indications for Ordering

Confirm suspected primary antibody deficiency in individual with clinical symptoms

Test Description

- Targeted capture of all coding exons and intron/exon boundaries followed by massively parallel sequencing
 - Reported variants are confirmed by Sanger sequencing
- Deletion/duplication analysis by tiled, custom-designed comparative genomic hybridization (CGH) array

Tests to Consider

Primary test

Primary Antibody Deficiency Panel, Sequencing (35 Genes) and Deletion/Duplication (26 Genes) 2011156

- Preferred test for individuals with clinical phenotype of
 - Primary antibody deficiency
 - Agammaglobulinemia
 - Hyper IgM syndrome
 - Common variable immunodeficiency (CVID)
 - Atypical severe combined immunodeficiency
 - Other related immunodeficiency disorder

Related tests

Initial screening for immunodeficiency

- CBC with Platelet Count and Automated Differential 0040003
- Lymphocyte Subset Panel 7 - Congenital Immunodeficiencies 0095899
- B-Cell Memory and Naive Panel 2008901
- Lymphocyte Antigen and Mitogen Proliferation Panel with Cytokine Response 2013117
- Immunoglobulins (IgA, IgG, IgM), Quantitative 0050630
- Immunoglobulin G Subclasses (1, 2, 3, 4) 0050577
- Familial Mutation, Targeted Sequencing 2001961

Disease Overview

Incidence/prevalence – see table

Age of onset

- Agammaglobulinemia and hyper IgM syndrome – usually within first two years of life
- CVID – across all ages, but mostly in the second and third decade

Symptoms

- Unusual, opportunistic, or severe infections
 - Most common organisms
 - *Histoplasma capsulatum*
 - *Candida spp*
 - *Cryptococcus neoformans*
 - Common sites
 - Respiratory – pneumonia/empyema
 - Gastrointestinal
 - Diarrhea – intermittent or chronic
 - Skin
 - Head and neck
 - Oral ulcers/gingivitis/stomatitis
 - Conjunctivitis
 - Otitis media
 - Lymphadenopathy
 - CNS
 - Other symptoms
 - Sepsis
 - Failure to thrive
 - Splenomegaly
 - Autoimmune conditions
 - Neutropenia
 - Granulomatous disease
 - Associated with increased risk of lymphoid and nonlymphoid malignancies

Genetics

Genes – see table

Mutations

- Mutations in multiple genes appear to cause overlapping phenotypes
- Other genetic and/or environmental factors may influence severity of clinical phenotype

Test Interpretation

Clinical sensitivity

- CVID – 20%
- Hyper IgM syndrome – 75-80%
- Agammaglobulinemia – 90%
Results

- **Positive**
 - Two pathogenic mutations on opposite chromosomes detected in a gene with autosomal recessive (AR) inheritance
 - Confirms diagnosis of primary antibody deficiency
 - One pathogenic mutation in an X-linked gene detected in males, or one pathogenic mutation in an autosomal dominant gene detected in males or females
 - Confirms diagnosis of primary antibody deficiency
 - One pathogenic mutation detected in an AR gene
 - Individual is a carrier
 - One pathogenic mutation detected in an X-linked gene in females
 - Individual is a carrier

- **Negative**
 - No pathogenic mutation detected
 - Reduces, but does not exclude, a diagnosis of primary antibody deficiency

- **Inconclusive**
 - Variants of uncertain clinical significance may be identified

Limitations

- Not determined or evaluated
 - Mutations in genes not included on the panel
 - Deep intronic and regulatory region mutations
 - Breakpoints for large deletions/duplications
 - Translocations
 - Deletions/duplications will not be detected in
 - **IKBKG**, **LRBA**, **LRRC8A**, **PIK3CD**, **PIK3R1**, **PLCG2**, **PRKCD**, **SH2D1A**, or **XIAP/BIRC4** gene
 - Small deletions or insertions may not be detected
 - Diagnostic errors can occur due to rare sequence variations
 - Lack of a detectable gene mutation does not exclude a diagnosis of primary antibody deficiency

Gene Symbol | Gene Name | NM # | OMIM # | Phenotype/Disorder | Inh.* | Incidence/Prevalence |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Adenosine deaminase</td>
<td>NM_000022</td>
<td>608958</td>
<td>SCID T-cell/B-cell/NK-cell negative, due to ADA deficiency</td>
<td>AR</td>
<td>1-9/million live births Higher in populations with high degree of consanguinity</td>
</tr>
<tr>
<td>AICDA</td>
<td>Activation-induced cytidine deaminase</td>
<td>NM_020661</td>
<td>605257</td>
<td>Immunodeficiency with hyper IgM, type 2</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia telangiectasia mutated (includes complementation groups A, C and D)</td>
<td>NM_000051</td>
<td>607585</td>
<td>Ataxia telangiectasia</td>
<td>AR</td>
<td>1/40,000 – 100,000 Varies with degree of consanguinity</td>
</tr>
<tr>
<td>BLNK</td>
<td>B-cell linker</td>
<td>NM_013314</td>
<td>604515</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>BTK</td>
<td>Bruton agammaglobulinemia tyrosine kinase</td>
<td>NM_000061</td>
<td>300300</td>
<td>Agammaglobulinemia and isolated growth hormone deficiency X-linked agammaglobulinemia</td>
<td>XL</td>
<td>1-9/million</td>
</tr>
<tr>
<td>CD19</td>
<td>CD19 antigen</td>
<td>NM_001770</td>
<td>107265</td>
<td>CVID</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>CD40</td>
<td>CD40 antigen</td>
<td>NM_001250</td>
<td>109535</td>
<td>Immunodeficiency with hyper IgM</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>CD40LG</td>
<td>CD40 ligand (TNF superfamily, member 5, hyper IgM syndrome, TNFSF5)</td>
<td>NM_000074</td>
<td>300386</td>
<td>Immunodeficiency with X-linked hyper IgM</td>
<td>XL</td>
<td>2/million males</td>
</tr>
<tr>
<td>CD79A</td>
<td>CD79A antigen, Iga</td>
<td>NM_001783</td>
<td>112205</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>CD79B</td>
<td>CD79B molecule, Igb</td>
<td>NM_000626</td>
<td>147245</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>CD81</td>
<td>CD81 molecule</td>
<td>NM_004356</td>
<td>186845</td>
<td>CVID</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>CR2</td>
<td>Complement component (3d/Epstein Barr virus) receptor 2</td>
<td>NM_001006658</td>
<td>120650</td>
<td>CVID</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>ICOS</td>
<td>Inducible T-cell costimulator</td>
<td>NM_012092</td>
<td>604558</td>
<td>CVID</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>IGHM</td>
<td>Immunoglobulin heavy constant mu cDNA-X17115</td>
<td>147020</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>IGLL1</td>
<td>Immunoglobulin lambda-like polypeptide 1, I5</td>
<td>NM_020070</td>
<td>146770</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>IKBKG</td>
<td>Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma, NEMO</td>
<td>NM_001099857</td>
<td>300248</td>
<td>Hypohidrotic ectodermal dysplasia with immune deficiency Anhidrotic ectodermal, dysplasia, lymphedema, and immunodeficiency Immunodeficiency 33 syndrome Incontinentia pigmenti Recurrent isolated invasive pneumococcal disease</td>
<td>XL</td>
<td>Unknown</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>NM #</td>
<td>OMIM #</td>
<td>Phenotype/Disorder</td>
<td>Inh.*</td>
<td>Incidence/Prevalence</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>LRBA</td>
<td>LPS-responsive vesicle trafficking, beach and anchor containing</td>
<td>NM_006726</td>
<td>606453</td>
<td>CVID with autoimmunity</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>LRRC8A</td>
<td>Leucine rich repeat containing 8 family, member A</td>
<td>NM_019594</td>
<td>608360</td>
<td>Agammaglobulinemia</td>
<td>AD</td>
<td>Unknown</td>
</tr>
<tr>
<td>MRE11A</td>
<td>Meiotic recombination 11 homologue A</td>
<td>NM_005591</td>
<td>600814</td>
<td>Ataxia-telangiectasia-like disorder</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>MS4A1</td>
<td>Membrane-spanning 4-domains, subfamily A, member 1</td>
<td>NM_152866</td>
<td>112210</td>
<td>CVID</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>NBN/NBS1</td>
<td>Nibrin</td>
<td>NM_002485</td>
<td>602667</td>
<td>Nijmegen breakage syndrome</td>
<td>AR</td>
<td>~1/100,000</td>
</tr>
<tr>
<td>NFKB2</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B cells 2</td>
<td>NM_002502</td>
<td>164012</td>
<td>CVID</td>
<td>AD</td>
<td>Unknown</td>
</tr>
<tr>
<td>NFKBIA</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitors, alpha</td>
<td>NM_020529</td>
<td>164008</td>
<td>Anhidrotic ectodermal dysplasia with T-cell immunodeficiency</td>
<td>AD</td>
<td>Unknown</td>
</tr>
<tr>
<td>PIK3CD</td>
<td>Phosphoinositide-3-kinase, catalytic, delta polypeptide</td>
<td>NM_005026</td>
<td>602839</td>
<td>Immunodeficiency 14 syndrome</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>PIK3R1</td>
<td>Phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)</td>
<td>NM_181523</td>
<td>171833</td>
<td>Agammaglobulinemia</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>PLCG2</td>
<td>Phospholipase C gamma 2</td>
<td>NM_002661</td>
<td>600220</td>
<td>Autoinflammation, antibody deficiency, and immune dysregulation syndrome</td>
<td>AD</td>
<td>Rare</td>
</tr>
<tr>
<td>PRKCD</td>
<td>Protein kinase C, delta</td>
<td>NM_006254</td>
<td>176977</td>
<td>SCID, T-cell negative, B-cell/NK-cell positive</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>PTPRC</td>
<td>Protein tyrosine phosphatase, receptor type C</td>
<td>NM_002838</td>
<td>151460</td>
<td>SCID, T-cell/B-cell negative, NK-cell positive</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>RAG2</td>
<td>Recombination activating gene 2</td>
<td>NM_000536</td>
<td>179616</td>
<td>SCID, T-cell/B-cell negative, NK-cell positive, Omenn syndrome, Combined cellular and humoral immune defects with granulomas</td>
<td>AR</td>
<td>~1/100,000 live births</td>
</tr>
<tr>
<td>SH2D1A</td>
<td>SH2 domain protein 1A, Duncan’s disease (lymphoproliferative syndrome)</td>
<td>NM_002351</td>
<td>300490</td>
<td>X-linked lymphoproliferative syndrome</td>
<td>XL</td>
<td>1/million males</td>
</tr>
<tr>
<td>TNFRSF13B</td>
<td>Tumour necrosis factor receptor superfamily, member 13b, TACI</td>
<td>NM_012452</td>
<td>604907</td>
<td>CVID, immunoglobulin A deficiency</td>
<td>AD or AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TNFRSF13C</td>
<td>Tumour necrosis factor receptor superfamily, member 13C, BAFFR</td>
<td>NM_052945</td>
<td>606269</td>
<td>CVID</td>
<td>AR or AD</td>
<td>Unknown</td>
</tr>
<tr>
<td>UNG</td>
<td>Uracil DNA glycosylase</td>
<td>NM_080911</td>
<td>191525</td>
<td>Immunodeficiency with hyper IgM syndrome</td>
<td>AR</td>
<td>Unknown</td>
</tr>
<tr>
<td>VAV1</td>
<td>Vav1 guanine nucleotide exchange factor</td>
<td>NM_005428</td>
<td>164875</td>
<td>CVID</td>
<td>AD</td>
<td>Unknown</td>
</tr>
<tr>
<td>XIAP/BIRC4</td>
<td>X-linked inhibitor of apoptosis</td>
<td>NM_001167</td>
<td>300079</td>
<td>X-linked lymphoproliferative syndrome</td>
<td>XL</td>
<td>1/million males</td>
</tr>
</tbody>
</table>

Inh. = inheritance, AD = autosomal dominant, AR = autosomal recessive, XL = X-linked