Idiopathic and Hereditary Pancreatitis

Indications for Ordering
Confirm diagnosis and/or genetic cause for pancreatitis in symptomatic individuals

Test Description
Polymerase chain reaction followed by bidirectional sequencing of coding regions and intron/exon borders

Tests to Consider

Primary tests
Pancreatitis, Panel (CFTR, CTRC, PRSS1, SPINK1) Sequencing 2010876
• Preferred test for individuals with history of idiopathic pancreatitis

Pancreatitis (CTRC) Sequencing 2010703
• For adults with idiopathic pancreatitis if other components of panel (CFTR, PRSS1, SPINK1) have been sequenced without providing a complete explanation for the pancreatitis

Pancreatitis (PRSS1) Sequencing 2002016
• Preferred test for individuals with idiopathic pancreatitis who
 o Are <20 years of age OR
 o Have 2 affected first-degree relatives

Pancreatitis (SPINK1) Sequencing 2002012
• For adults with idiopathic pancreatitis if other components of panel (CFTR, CTRC, PRSS1) have been sequenced without providing a complete explanation for the pancreatitis

Related tests
Cystic Fibrosis (CFTR) Sequencing 0051110
• May be used to test for variants causative for mild cystic fibrosis for individuals with idiopathic pancreatitis

Familial Mutation, Targeted Sequencing 2001961
• Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

Incidence/prevalence
• Chronic pancreatitis
 o Incidence – 5-12/100,000 per year (Yadav, 2013)
 o Prevalence – ~50/100,000 (Yadav, 2013)
• Idiopathic chronic pancreatitis
 o ~20% of all cases of pancreatitis (Masson, 2013)

Symptoms
• Acute pancreatitis
 o Can be life-threatening
 o Symptoms
 ▪ Sudden onset of pain in the upper abdomen, fever, nausea and vomiting, rapid pulse
 ▪ Pancreatic enzymes (amylase, lipase) – increased levels
 o Etiologies
 ▪ Common – gallstone passage or obstruction; chronic, heavy alcohol use
 ▪ Other – abdominal trauma, medications, infections, tumors, genetic abnormalities
• Chronic pancreatitis
 o Chronic inflammation and progressive disease
 o May lead to permanent tissue damage
 o Up to a 40% lifetime risk for pancreatic cancer
 o Symptoms
 ▪ Abdominal pain, nausea, vomiting, weight loss, diarrhea, oily stools
 ▪ Advanced stages – pain often decreases, malabsorption and diabetes may occur
 o Etiologies
 ▪ Chronic, heavy alcohol use (70% of cases)
 ▪ Other factors (10% of cases)
 • Autoimmune
 • Hereditary disorders of the pancreas
 ▪ Cystic fibrosis
 • Hypercalcemia
 • Hyperlipidemia
 • Hyperparathyroidism
 • Medications
 • Idiopathic (20% of cases)
Genetics

Genes – CFTR, CTRC, PRSS1, SPINK1

Inheritance
• PRSS1 – autosomal dominant with gain-of-function variants
• CFTR, CTRC, SPINK1 – autosomal recessive/digenic

Penetrance – 80% for PRSS1 variants R122H and N29I (Sossenheimer, 1997)

Test Interpretation

Sensitivity/specificity in idiopathic pancreatitis
• Clinical sensitivity for contributory or causative variants
 o Pancreatitis panel (CFTR, CTRC, PRSS1, SPINK1) sequencing – ~48% (Masson, 2013)
 o Pancreatitis (CFTR) sequencing – ~28%
 o Pancreatitis (SPINK1) sequencing – ~16%
 o Pancreatitis (PRSS1) sequencing – ~9%
 o Pancreatitis (CTRC) sequencing – ~4%
• Analytical sensitivity/specificity – 99%

Results
• Positive
 o Single gain-of-function PRSS1 gene variant detected, OR
 o Two pathogenic CFTR, SPINK1, or CTRC gene variants detected, OR one pathogenic variant detected in two different genes (digenic inheritance)
 ▪ Causative for pancreatitis
 o Single pathogenic CFTR, SPINK1, or CTRC gene variant detected
 ▪ Increased risk for pancreatitis, but not causative
• Negative
 o No pathogenic variants detected in CFTR, CTRC, PRSS1, or SPINK1 genes
 ▪ No genetic etiology for pancreatitis determined
 ▪ Does not exclude genetic etiology
• Inconclusive
 o Gene variant detected, but whether variant is pathogenic or benign is unknown

Limitations
• Not detected
 o Regulatory region and deep intronic mutations
 o Large deletions/duplications
• Diagnostic errors can occur due to rare sequence variations
• Variants in currently unknown genes may be associated with pancreatitis

References