Hypochondroplasia (FGFR3), 2 Mutations

Indications for Ordering

Confirm a diagnosis of hypochondroplasia in individuals with clinical or radiological evidence of the condition

Test Description

Polymerase chain reaction/fluorescence monitoring to detect two mutations in the FGFR3 gene

- c.1620C>A (p.N540K)
- c.1620C>G (p.N540K)

Tests to Consider

Primary tests

Hypochondroplasia (FGFR3) 2 Mutations 0051367
Achondroplasia (FGFR3) 2 Mutations 0051266

- Confirm a clinical or suspected diagnosis of achondroplasia

Disease Overview

Incidence – 1/15,000-40,000

Symptoms

- Extreme clinical variability makes diagnosis before 3 years of age difficult
- Skeletal findings and medical complications are similar but less severe than achondroplasia
- Rhizomelic or mesomelic shortening of long bones
- Short stature
- Short/broad hands and feet; trident hands
- Mild joint laxity
- Lumbar lordosis
- Macrocephaly
- Facial abnormalities
 - Frontal bossing
 - Midface hypoplasia
- Developmental delay

Radiologic findings

- Shortening of long bones with metaphyseal flaring
- Narrowing of inferior lumbar interpedicular distances
- Mild brachydactyly
- Short/broad femoral neck
- Squared/shortened ilia

Genetics

Gene – FGFR3
Inheritance – autosomal dominant

Penetrance – 100%

De novo mutations – most cases
- Risk of recurrence in offspring of unaffected parents is <0.01%

Structure/function
- Encodes a transmembrane tyrosine kinase receptor that is a regulator of bone growth
- Gain-of-function mutations lead to altered bone growth and characteristic skeletal findings

Test Interpretation

Sensitivity/specificity
- Clinical sensitivity – 70% (Bober, 2013)
- Analytical sensitivity/specificity – 99%

Results
- Positive
 - Heterozygous for either c.1620C>A or c.1620C>G
 - Confirmed hypochondroplasia
 - Homozygous or compound heterozygous – two mutations detected
 - A more severe disease is predicted
- Negative
 - No mutation detected
 - Likelihood of hypochondroplasia is reduced, but still possible

Limitations
- Diagnostic errors can occur due to rare sequence variations
- Mutations other than FGFR3 c.1620C>A and c.1620C>G are not detected

References