Hereditary Persistence of Fetal Hemoglobin, 8 Mutations

Indications for Ordering

- Aid in determining cause of elevated fetal hemoglobin (HbF; α2γ2)
- Confirm suspected deletional hereditary persistence of fetal hemoglobin (HPFH)
- Carrier testing for individuals with a family history consistent with HPFH

Test Description

Multiplex PCR and gel electrophoresis to detect 8 common deletions associated with HPFH
- HPFH-1 (g.5174452_5259368del84917)
- HPFH-2 (g.5180404_5263982del83579)
- HPFH-3 (g.5215683_5265453del49771)
- HPFH-4 (g.5217940_5260078del42139)
- HPFH-5 (g.5246023_5258951del2929)
- HPFH-6 (g.5193975_5273259del79278)
- HPFH-7 (g.5247860_5270651del229792)
- SEA-HPFH (g.522878_5250288del27411)

Tests to Consider

Hereditary Persistence of Fetal Hemoglobin (HPFH) 8 Mutations 2005408
- Determine cause of elevated HbF

Disease Overview

Incidence – unknown in general population
- More frequent in the following populations
 - HPFH-1 (African) and HPFH-2 (Ghanaian)
 - Described in African and African-American individuals
 - Found in ~0.1% of African-American individuals in southeastern U.S.
 - HPFH-3 – Asian Indian
 - HPFH-4 – Southern Italian
 - HPFH-5 – Italian
 - HPFH-6 – Vietnamese
 - HPFH-7 – Kenyan
 - SEA-HPFH – Southeast Asian
 - Identified in Cambodian, Vietnamese, and Chinese populations

Physiology

- Hemoglobin is a tetrameric molecule that reversibly binds oxygen in red blood cells
 - Consists of two proteins expressed from the alpha globin gene cluster and two from the beta globin cluster
 - Expression of genes within these clusters is developmentally regulated
 - Results in production of embryonic, fetal, and adult hemoglobin forms
 - By 6 months of age, a shift from gamma globin to beta globin (HBB) gene expression occurs
 - Reduces amount of HbF produced so that the major form of hemoglobin present is HbA (α2β2)
 - Although residual amounts of HbF are produced throughout life, the majority of healthy adults have <1% HbF

Diagnostic issues

Elevated Hb F
- Has no clinical significance in healthy individuals
- Can occur in adults due to acquired conditions
 - Pregnancy
 - Anemias
 - Leukemia
- Inherited conditions
 - HPFH
 - Can be beneficial in patients with sickle cell disease or beta thalassemia
 - Increased HbF leads to milder phenotypes
 - High levels of HbF – up to 30% in heterozygotes, near 100% for homozygotes
 - Testing is important to distinguish from other etiologies such as delta/beta thalassemia
 - Traditionally diagnosed hematologically
 - Normal red blood cell indices in heterozygotes, mild erythrocytosis in homozygotes
 - Equally distribution of HbF among red blood cells (pancellular HPFH)
 - Molecular diagnosis is most definitive
 - Delta/beta thalassemia
 - Moderate elevation of HbF (5-20%) in heterozygotes
 - Hypochromic, microcytic anemia
 - Nonequal distribution of HbF among red blood cells (heterocellular HPFH)
Genetics

Genes — genes of the beta globin gene cluster including \(HBB\)

Mutations
- Two different molecular mechanisms can result in HPFH
 - **Deletional**
 - HPFH results from specific large deletions in beta globin gene cluster involving \(HBB\)
 - **Nondeletional**
 - HPFH caused by point mutations in the promoters of the gamma globin genes (\(HBG1\) and \(HBG2\))
- May complicate diagnosis of sickle cell disease or beta thalassemia (especially in infancy, when the major form of Hb present is HbF)
- May mask beta thalassemia trait by ameliorating the hematological findings typically present
- Other genetic modifiers of HbF levels have been identified

Test Interpretation

Sensitivity/specificity
- Clinical sensitivity/specificity — unknown
- Analytical sensitivity/specificity — >95%

Results
- Heterozygous — one copy of a deletion associated with HPFH identified
 - Predicts persistent elevation of HbF in all erythrocytes
- Homozygous or compound heterozygous — two deletions associated with HPFH identified
 - Predicts persistent elevation of HbF in all erythrocytes
- Negative — none of the 8 common deletions associated with HPFH identified
 - HPFH is not excluded

Limitations
- Only the 8 targeted deletions associated with HPFH will be detected
- Point mutations or rare deletions that cause HPFH or delta/beta thalassemia will not be identified
- Other genetic modifiers of HbF levels will not be assessed
- This test is unable to differentiate homozygosity for an HPFH deletion from compound heterozygosity for an HPFH deletion and a rare globin cluster deletion
- Diagnostic errors can occur due to rare sequence variations