Hereditary Breast and Ovarian Cancer

Indications for Ordering

- Numerous professional guidelines are available for hereditary breast and ovarian cancer testing
 - Ordering indications below are suggestions based on National Comprehensive Cancer Network (NCCN) guidelines for BRCA1- and BRCA2-associated hereditary breast and ovarian cancer (HBOC) syndrome
- For any individual with a family member who has a known pathogenic variant previously identified in 1 of the genes on the Breast and Ovarian Hereditary Cancer Panel, order the Familial Mutation, Targeted Sequencing test

Based on personal AND family history, testing is indicated for

- Women with any of the following
 - Breast cancer diagnosed by age 45
 - Ovarian cancer
 - 2 primary breast cancers, with 1 diagnosed by age 50
 - Breast cancer diagnosed by age 50, with 1 or more family members with either pancreatic or prostate cancer
 - Triple negative breast cancer diagnosed by age 60
 - Breast cancer at any age with 1 or more family members with breast cancer diagnosed by age 50
 - Breast cancer diagnosed at any age with 2 or more family members from the same side of the family with breast cancer at any age
 - Breast cancer diagnosed at any age with 1 or more family members with ovarian cancer
 - Breast cancer diagnosed at any age with 2 or more family members from the same side of the family with pancreatic or prostate cancer
 - Breast cancer diagnosed at any age and male family member with breast cancer
 - Breast or pancreatic cancer at any age and Ashkenazi Jewish ancestry
 - Pancreatic cancer or prostate cancer at any age with 1 or more family members with breast cancer by age 50 or ovarian cancer at any age

- Men with any of the following
 - Breast cancer at any age
 - Pancreatic cancer or prostate cancer at any age with 1 or more family members with breast cancer by age 50 or ovarian cancer at any age
 - Pancreatic cancer or prostate cancer at any age with 2 or more family members from the same side of the family with breast, pancreatic, and/or prostate cancer at any age

Based on family history ONLY, testing is indicated for an asymptomatic patient with

- First- or second-degree family member meeting any of the criteria above
- Third-degree family member who has breast and/or ovarian cancer and 2 or more family members with breast cancer (at least 1 diagnosed by age 50) and/or ovarian cancer

Test Description

Breast and Ovarian Hereditary Cancer Panel

- Targeted capture of all coding exons and intron/exon junctions of the genes listed in the table below, including the PTEN promoter region, followed by massively parallel sequencing
- Sanger sequencing of CHEK2 c.1100delC variant
- Deletion/duplication analysis by tiled, custom-designed comparative genomic hybridization (CGH) array for the genes listed in the table below

BRCA1 and BRCA2 testing only

- Bidirectional sequencing of the entire coding regions and intron-exon boundaries of the BRCA1 and BRCA2 genes
- Deletion/duplication analysis by multiplex ligation-dependent probe amplification (MLPA) for the BRCA1 and BRCA2 genes
Tests to Consider

Primary tests

Breast and Ovarian Hereditary Cancer Panel, Sequencing and Deletion/Duplication, 20 Genes 2012026
- Preferred first-tier genetic test to diagnose a hereditary cancer syndrome related to breast and ovarian cancer if a known familial variant has NOT been previously identified
- When a relative has a previously identified pathogenic variant, see Familial Mutation, Targeted Sequencing
- Highest detection rate for a hereditary syndrome related to breast and/or ovarian cancer, but also highest likelihood of identifying variants of uncertain significance

Breast and Ovarian Hereditary Cancer Syndrome (BRCA1 and BRCA2) Sequencing and Deletion/Duplication 2011949
- Preferred first-tier genetic test to confirm HBOC syndrome (BRCA1 and BRCA2 genes only)
- Up to 99% sensitivity for BRCA1 and BRCA2 variants
- 20-60% sensitivity for hereditary breast and ovarian cancers, in general
- When a relative has a previously identified pathogenic BRCA1 or BRCA2 gene variant, see Familial Mutation, Targeted Sequencing

Breast and Ovarian Hereditary Cancer Syndrome (BRCA1 and BRCA2) Sequencing 2011954
- Acceptable first-tier genetic test to confirm HBOC syndrome (BRCA1 and BRCA2 genes only)
- Up to ~90% sensitivity for BRCA1 and BRCA2 variants
- 20-60% sensitivity for hereditary breast and ovarian cancers, in general
- When a relative has a previously identified pathogenic BRCA1 or BRCA2 gene variant, see Familial Mutation, Targeted Sequencing

Related tests

Familial Mutation, Targeted Sequencing 2001961
- Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

HBOC syndrome

Prevalence – 1/500 individuals from general population or 1/40 Ashkenazi Jews have a BRCA1 or BRCA2 pathogenic variant
- BRCA1 and BRCA2 pathogenic variants are believed to cause 20-60% of hereditary breast and ovarian cancers, in general
- 5-10% of all breast cancers and 10-15% of all ovarian cancers are caused by BRCA1 or BRCA2 variants

Age of onset
- Sporadic breast cancer typically occurs after menopause and/or after age 50
- Breast cancer commonly occurs before menopause and/or before age 50 in carriers of BRCA1 and BRCA2 pathogenic variants

Symptoms
- BRCA1 pathogenic variant carriers are at increased risk for hereditary breast and ovarian cancers
 - May also be at increased risk for fallopian, peritoneal, cervical, uterine, pancreatic, and colorectal cancers
- BRCA2 pathogenic variant carriers are at increased risk for hereditary breast and ovarian cancers
 - May also be at increased risk for pancreatic, stomach, gallbladder, bile duct, and melanoma cancers
- Men with BRCA1 pathogenic variants are at increased risk for breast cancer and possibly pancreatic, prostate, and testicular cancers
- Men with BRCA2 pathogenic variants are at increased risk for breast, pancreatic, and prostate cancers
- See table below for full gene list and associated cancer risks

Genetics

Genes – see table

Penetrance – cumulative cancer risks for female pathogenic variant carriers include
- Breast cancer – 57% for BRCA1 and 49% for BRCA2 by age 70
- Ovarian cancer – 40% for BRCA1 and 18% for BRCA2 by age 70

Test Interpretation

Clinical sensitivity
- Although actual value is unknown, sensitivity of HBOC 20-gene panel is at least 20-60%
- BRCA1 and BRCA2 sequencing and deletion/duplication testing alone detects 20-60% of hereditary breast and ovarian cancers, in general (Pruthi, 2010; Meindl, 2011)
 - Up to 90% of BRCA1 and BRCA2 variants are detectable by sequencing
 - ~10% of BRCA1 and BRCA2 variants are detectable by large deletion/duplication analysis

Test results
- Positive
 - 1 pathogenic variant identified in a gene with autosomal dominant inheritance
 - Confirms a diagnosis of gene-specific risk/predisposition for associated hereditary cancer(s)
 - If the pathogenic variant is identified in BRCA1 or BRCA2, this confirms a diagnosis of HBOC syndrome
 - 2 pathogenic variants located on opposite chromosomes detected in the autosomal recessively inherited gene MUTYH
 - Confirms a diagnosis of MUTYH-associated polyposis (MAP) syndrome
 - 1 pathogenic variant detected in the autosomal recessively inherited gene MUTYH
 - Confirms carrier status for MAP syndrome

© 2017 ARUP LABORATORIES | Content review August 2017 | Last update August 2017
• Negative
 o No pathogenic variants detected in any of the genes tested
 ▪ Reduces the likelihood of, but does not exclude, a hereditary cancer syndrome diagnosis
• Inconclusive
 o Variants of uncertain clinical significance may be identified

Limitations
• The following will not be determined or evaluated
 o Deep intronic and regulatory variants
 o Breakpoints for large deletions/duplications
 o Sequence changes in EPCAM gene
 o Exons 11-15 of CHEK2 gene will not be evaluated, with the exception of the c.1100delC variant
 o Deletions/duplications
 ▪ Exon 1 in CDH1, MSH2, and RAD51D genes
 ▪ Exons 4, 6, and 7 in STK11 gene
 ▪ Exon 8 in PTEN gene
 ▪ Exon 12 in ATM gene
• Small deletions or insertions may not be detected
• Diagnostic errors can occur due to rare sequence variations

References

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>NM #</th>
<th>OMIM #</th>
<th>Inheritance</th>
<th>Associated Cancer/Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Ataxia telangiectasia mutated (includes complementation groups A, C and D)</td>
<td>000051</td>
<td>607585</td>
<td>AD, AR</td>
<td>Breast, possible increased risk for colorectal (AD) Ataxia telangiectasia (AR)</td>
</tr>
<tr>
<td>BARD1</td>
<td>BRCA1-associated RING domain gene 1</td>
<td>000465</td>
<td>601593</td>
<td>AD</td>
<td>Breast, neuroblastoma</td>
</tr>
<tr>
<td>BRCA1</td>
<td>Breast cancer 1</td>
<td>007294</td>
<td>113705</td>
<td>AD</td>
<td>Breast, ovarian, fallopian, peritoneal, pancreatic, prostate; HBOC syndrome</td>
</tr>
<tr>
<td>BRCA2</td>
<td>Breast cancer 2</td>
<td>000059</td>
<td>600185</td>
<td>AD, AR</td>
<td>Breast, ovarian, fallopian, peritoneal, pancreatic, prostate, gallbladder, gastric, melanoma; HBOC syndrome (AD) Fanconi anemia, complementation group J (AR)</td>
</tr>
<tr>
<td>BRIP1</td>
<td>BRCA1 interacting protein C-terminal, helicase 1</td>
<td>032043</td>
<td>605882</td>
<td>AD, AR</td>
<td>Ovarian, possible increased risk for breast (AD) Fanconi anemia, complementation group J (AR)</td>
</tr>
<tr>
<td>CDH1</td>
<td>Cadherin 1, E-cadherin (epithelial)</td>
<td>004360</td>
<td>192090</td>
<td>AD</td>
<td>Gastric, breast, prostate</td>
</tr>
<tr>
<td>CHEK2</td>
<td>CHK2 checkpoint homologue (S. pombe RAD53)</td>
<td>007194</td>
<td>604373</td>
<td>AD</td>
<td>Breast, colorectal, prostate</td>
</tr>
<tr>
<td>EPCAM</td>
<td>Epithelial cell adhesion molecule</td>
<td>002354</td>
<td>185535</td>
<td>AD</td>
<td>Colorectal, ovarian; Lynch syndrome</td>
</tr>
<tr>
<td>MEN1</td>
<td>Multiple endocrine neoplasia 1</td>
<td>130799</td>
<td>613733</td>
<td>AD</td>
<td>Glucagonomas, gastrinomas, VIPomas, thymic, bronchial, gastric, breast; multiple endocrine neoplasia type 1 (MEN1)</td>
</tr>
<tr>
<td>MLH1</td>
<td>MutL homologue 1, colorectal cancer, nonpolyposis type 2 (E. coli)</td>
<td>000249</td>
<td>120436</td>
<td>AD, AR</td>
<td>Ovarian, colorectal, endometrial, gastric, bladder, kidney; Lynch syndrome (AD) Constitutional mismatch repair deficiency (AR)</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>NM #</td>
<td>OMIM #</td>
<td>Inheritance</td>
<td>Associated Cancer/Syndrome</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>MSH2</td>
<td>MutS homologue 2, colorectal cancer, nonpolyposis type 1 (E. coli)</td>
<td>000251</td>
<td>609309</td>
<td>AD, AR</td>
<td>Ovarian, colorectal, endometrium, gastric, bladder, kidney; Lynch syndrome (AD) Constitutional mismatch repair deficiency (AR)</td>
</tr>
<tr>
<td>MSH6</td>
<td>MutS (E.coli) homologue 6</td>
<td>000179</td>
<td>600678</td>
<td>AD, AR</td>
<td>Ovarian, colorectal, endometrium, gastric, bladder, kidney; Lynch syndrome (AD) Constitutional mismatch repair deficiency (AR)</td>
</tr>
<tr>
<td>MUTYH</td>
<td>MutY homologue (E. coli)</td>
<td>001128425</td>
<td>604933</td>
<td>AD, AR</td>
<td>Colorectal; MUTYH-associated polyposis (MAP) (AR) Possible increased risk for gastric, breast, duodenal, endometrium (AD)</td>
</tr>
<tr>
<td>NBN</td>
<td>Nibrin (NBS1)</td>
<td>002485</td>
<td>602667</td>
<td>AD, AR</td>
<td>Breast, possible increased risk for ovarian (AD) Nijmegen breakage syndrome (AR)</td>
</tr>
<tr>
<td>PALB2</td>
<td>Partner and localizer of BRCA2</td>
<td>024675</td>
<td>610335</td>
<td>AD, AR</td>
<td>Breast, pancreatic, possible increased risk for ovarian (AD) Fanconi anemia, complementation group N (AR)</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase and tensin homolog</td>
<td>000314</td>
<td>601728</td>
<td>AD</td>
<td>Breast, thyroid, endometrial, colorectal; PTEN hamartoma tumor syndrome/Cowden syndrome</td>
</tr>
<tr>
<td>RAD51C</td>
<td>RAD51 homolog (S. cerevisiae)</td>
<td>058216</td>
<td>602774</td>
<td>AD, AR</td>
<td>Ovarian, possible increased risk for breast (AD) Fanconi anemia, complementation group O (AR)</td>
</tr>
<tr>
<td>RAD51D</td>
<td>RAD51D homolog D (S. cerevisiae)</td>
<td>002878</td>
<td>602954</td>
<td>AD</td>
<td>Ovarian, possible increased risk for breast</td>
</tr>
<tr>
<td>STK11</td>
<td>Serine/threonine kinase 11 (LKB1)</td>
<td>000455</td>
<td>602216</td>
<td>AD</td>
<td>Breast, colorectal, stomach, pancreatic, ovarian; Peutz-Jeghers syndrome</td>
</tr>
<tr>
<td>TP53</td>
<td>Tumor protein 53</td>
<td>000546</td>
<td>191170</td>
<td>AD</td>
<td>Breast, ovarian, brain, soft tissue and osteosarcomas, gastrointestinal, leukemia, lymphoma, adrenocortical carcinoma; Li-Fraumeni syndrome</td>
</tr>
</tbody>
</table>

AD = autosomal dominant; AR = autosomal recessive