

Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency

Indications for Ordering

- Individuals (particularly those of African, Mediterranean, or Asian descent) with an acute hemolytic reaction triggered by exposure to a known oxidative drug, infection, or ingestion of fava beans
- Members (especially males) of families where jaundice, splenomegaly, or cholelithiasis are recurrent
- Newborns (particularly those of Mediterranean or African descent) with severe prolonged neonatal jaundice
- Asymptomatic individuals taking primaquine or other drugs that have adverse reactions in patients with G6PD deficiency

Test Description

Methodology

Glucose-6-Phosphate Dehydrogenase

Quantitative enzymatic

Glucose-6-Phosphate Dehydrogenase Deficiency (G6PD) Sequencing

 Polymerase chain reaction (PCR) amplification of G6PD exons 2-13 (entire coding region) followed by bidirectional sequencing

Glucose-6-Phosphate Dehydrogenase (G6PD) 2 Mutations

 PCR amplification of G6PD exons 4 and 5 with specific detection of the A+ (A376G) and A- (G202A and A376G on the same chromosome) alleles using TaqMan probes and fluorescent monitoring

Tests to Consider

Glucose-6-Phosphate Dehydrogenase 0080135

Preferred initial screening test for G6PD deficiency

<u>Glucose-6-Phosphate Dehydrogenase Deficiency (G6PD)</u> Sequencing 2007163

- Preferred test for individuals of high-risk ethnic backgrounds other than those of African descent
- Appropriate test for symptomatic individuals of African descent who do not carry the A- allele
- Detects most G6PD deficiency-causing gene variants

<u>Glucose-6-Phosphate Dehydrogenase (*G6PD*) 2 Mutations 0051684</u>

- Preferred test for individuals of African descent
- Detects the single most common pathogenic *G6PD* variant (the A- allele) in individuals of African descent

Disease Overview

Prevalence - 400 million worldwide

Varies by ethnicity

- 7/10 Kurdish Jewish males
- 1/6-10 African American males
- 1/7-9 Arabic males
- 1/6-16 Southeast Asian males

Symptoms

- Most symptomatic individuals have ~10% residual enzyme activity
- Presentation varies by gender
 - o Males
 - Hemizygotes variably affected
 - o Females
 - Heterozygotes may experience symptoms even in the presence of normal enzyme levels
 - Homozygotes may be seen in populations where the G6PD-deficient allele is common
- May present variably
- Acute hemolytic anemia in response to oxidative stress
- Neonatal jaundice
- Chronic nonspherocytic hemolytic anemia in the absence of oxidative stressors

Physiology

- G6PD protects red blood cell proteins from oxidative damage
- Decreased activity is associated with acute hemolytic anemia when individual is exposed to oxidative stress
 - Certain medications induce oxidative stress (eg, primaquine)
 - Other etiologies of stress
 - Diabetic ketoacidosis
 - Infections
 - Consumption of fava beans
- Severe decreases in enzyme activity (<10%)
 - Associated with chronic nonspherocytic hemolytic anemia in the absence of oxidative stressors

Genetics

Gene - G6PD

Inheritance - X-linked recessive

Penetrance – depends on variant; generally low

De novo variants - rare

Variants

- 400 allelic variants known
- >170 point variants in exons 2-13 are known to cause G6PD deficiency

Test Interpretation

Glucose-6-Phosphate Dehydrogenase

Clinical sensitivity - 99%

Results

- Positive
 - Class I severe enzyme deficiency
 - Associated with chronic nonspherocytic hemolytic anemia
 - Class II severe enzyme deficiency with <10% of normal activity
 - Associated with acute hemolytic anemia
 - Class III mild to moderate enzyme deficiency (10-60% of normal activity)
 - Most common class
 - Class IV very mild to almost normal enzyme activity (>60% of normal activity)
 - No clinical consequences

Limitations

- Reduced sensitivity for detection of G6PD deficiency in
 - o Presence of hemolytic crises
 - Neonates
 - o Presence of high reticulocyte count
 - After blood transfusion
 - Heterozygous females
- Diagnostic errors can occur due to rare sequence variations

Glucose-6-Phosphate Dehydrogenase Deficiency (*G6PD*) **Sequencing**

Sensitivity/specificity

Clinical sensitivity – >98% Analytical sensitivity/specificity – 99%

Results

- Positive
 - o Pathogenic variant(s) detected
- Negative
 - No pathogenic variant detected

Limitations

- Sequencing may detect variants of unknown clinical significance
- Diagnostic errors can occur due to rare sequence variations
- Not detected by sequencing
 - o Deep intronic or regulatory region variants
- Large deletions or duplications

Glucose-6-Phosphate Dehydrogenase (G6PD) 2 Mutations

Sensitivity/specificity

- Clinical sensitivity 99% in individuals of African descent
- Analytical sensitivity/specificity 99%

Results

Positive

- A- allele
 - Male hemizygotes and female homozygotes are predicted to be affected by G6PD deficiency
 - Female heterozygotes may be at risk for enzyme deficiency
- A+ allele
 - Not associated with G6PD deficiency phenotype

Limitations

- Variants other than A- and A+ will not be detected
- Diagnostic errors can occur due to rare sequence variations