Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency

Indications for Ordering

- Individuals (particularly those of African, Mediterranean, or Asian descent) with an acute hemolytic reaction triggered by exposure to a known oxidative drug, infection, or ingestion of fava beans
- Members (especially males) of families where jaundice, splenomegaly, or cholelithiasis are recurrent
- Newborns (particularly those of Mediterranean or African descent) with severe prolonged neonatal jaundice
- Asymptomatic individuals taking primaquine or other drugs that have adverse reactions in patients with G6PD deficiency

Disease Overview

Prevalence – 400 million worldwide
- Varies by ethnicity
 - 7/10 Kurdish Jewish males
 - 1/6-10 African American males
 - 1/7-9 Arabic males
 - 1/6-16 Southeast Asian males

Symptoms
- Most symptomatic individuals have ~10% residual enzyme activity
- Presentation varies by gender
 - Males
 - Hemizygotes – variably affected
 - Females
 - Heterozygotes – may experience symptoms even in the presence of normal enzyme levels
 - Homozygotes – may be seen in populations where the G6PD-deficient allele is common
- May present variably
 - Acute hemolytic anemia in response to oxidative stress
 - Neonatal jaundice
 - Chronic nonspherocytic hemolytic anemia in the absence of oxidative stressors

Physiology
- G6PD protects red blood cell proteins from oxidative damage
- Decreased activity is associated with acute hemolytic anemia when individual is exposed to oxidative stress
 - Certain medications induce oxidative stress (eg, primaquine)
 - Other etiologies of stress
 - Diabetic ketoacidosis
 - Infections
 - Consumption of fava beans
- Severe decreases in enzyme activity (<10%)
 - Associated with chronic nonspherocytic hemolytic anemia in the absence of oxidative stressors

Tests to Consider

Glucose-6-Phosphate Dehydrogenase 0080135
- Preferred initial screening test for G6PD deficiency

Glucose-6-Phosphate Dehydrogenase Deficiency (G6PD) Sequencing 2007163
- Preferred test for individuals of high-risk ethnic backgrounds other than those of African descent
- Appropriate test for symptomatic individuals of African descent who do not carry the A- allele
- Detects most G6PD deficiency-causing gene variants

Glucose-6-Phosphate Dehydrogenase (G6PD) 2 Mutations 0051684
- Preferred test for individuals of African descent
- Detects the single most common pathogenic G6PD variant (the A- allele) in individuals of African descent

Genetics

Gene – G6PD

Inheritance – X-linked recessive

Penetration – depends on variant; generally low

De novo variants – rare
Variants

- 400 allelic variants known
- >170 point mutations in exons 2-13 are known to cause G6PD deficiency

Test Interpretation

Glucose-6-Phosphate Dehydrogenase

Clinical sensitivity – 99%

Results

- Positive
 - Class I – severe enzyme deficiency
 - Associated with chronic nonspherocytic hemolytic anemia
 - Class II – severe enzyme deficiency with <10% of normal activity
 - Associated with acute hemolytic anemia
 - Class III – mild to moderate enzyme deficiency (10-60% of normal activity)
 - Most common class
 - Class IV – very mild to almost normal enzyme activity (>60% of normal activity)
 - No clinical consequences

Limitations

- Reduced sensitivity for detection of G6PD deficiency in
 - Presence of hemolytic crises
 - Neonates
 - Presence of high reticulocyte count
 - After blood transfusion
 - Heterozygous females
- Diagnostic errors can occur due to rare sequence variations

Glucose-6-Phosphate Dehydrogenase Deficiency (G6PD) Sequencing

Sensitivity/specificity

Clinical sensitivity – >98%
Analytical sensitivity/specificity – 99%

Results

- Positive
 - Pathogenic variant(s) detected
- Negative
 - No pathogenic variant detected

Limitations

- Sequencing may detect variants of unknown clinical significance
- Diagnostic errors can occur due to rare sequence variations
- Not detected by sequencing
 - Deep intronic or regulatory region variants
 - Large deletions or duplications

Glucose-6-Phosphate Dehydrogenase (G6PD) 2 Mutations

Sensitivity/specificity

- Clinical sensitivity – 99% in individuals of African descent
- Analytical sensitivity/specificity – 99%

Results

Positive

- A- allele
 - Male hemizygotes and female homozygotes are predicted to be affected by G6PD deficiency
 - Female heterozygotes may be at risk for enzyme deficiency
- A+ allele
 - Not associated with G6PD deficiency phenotype

Limitations

- Variants other than A- and A+ will not be detected
- Diagnostic errors can occur due to rare sequence variations