EGFR T790M Mutation in Circulating Tumor DNA

Indications for Ordering

Monitor blood plasma or cerebrospinal fluid (CSF) for:
- Development of *EGFR* T790M drug-resistant mutation in patients administered tyrosine kinase inhibitor (TKI) therapy for *EGFR*-mutant nonsmall cell lung cancer (NSCLC)
- Response to therapy and disease progression in patients receiving *EGFR* T790M-specific TKIs

Test Description

Digital droplet polymerase chain reaction

Tests to Consider

Typical testing strategy

In patients with *EGFR* gene mutations who are treated with early generation TKIs, consider monitoring for development of an acquired *EGFR* T790M mutation

- Blood plasma
 - Serial quantitative testing
 - Guides clinical treatment decisions about acquired resistance to early generation TKIs and decision to switch to *EGFR* T790M-specific TKIs
 - Monitors response to therapy in patients taking *EGFR* T790M-specific TKIs
- CSF
 - Serial quantitative testing for patients with isolated NSCLC brain metastases and undetectable blood plasma levels of *EGFR* T790M mutation
 - Guides clinical treatment decisions about switching to *EGFR* T790M-specific TKIs
 - Monitors response to therapy

Primary test

EGFR T790M Mutation Detection in Circulating Tumor DNA by Digital Droplet PCR

- Detect and quantify circulating *EGFR* T790M point mutation from blood plasma or CSF

Disease Overview

Prevalence and/or incidence

- NSCLC – 84% of lung cancer in the U.S.
- *EGFR* gene mutations are initially detected in 10-15% of NSCLC patients who will be treated with TKIs targeting these mutations
 - ~100% of treated patients’ cancers will progress on these initial TKIs
 - >60% are due to development of an acquired *EGFR* T790M point mutation

Treatment issues

- *EGFR* T790M gene mutation in circulating cell-free DNA from NSCLC causes resistance to early generation *EGFR* TKI drugs
 - Detection of this mutation is an indication to switch therapy to an *EGFR* T790M-specific TKI
 - Serial quantification of mutation levels by this assay guides treatment response to T790M-specific TKIs

Genetics

Gene – EGFR

Mutations

- Common activating mutations confer sensitivity to TKI therapy
 - L858R point mutation in exon 21
 - Insertions/deletions in exon 19
- *EGFR* T790M point mutation in exon 20 confers resistance to early generation TKIs in >60% of patients

Test Interpretation

Sensitivity/specificity

- Clinical sensitivity – 94%
- Clinical specificity – 100%
- Analytical sensitivity/specificity – 100%
Results

- Positive
 - *EGFR* T790M circulating mutation detected
 - T790M quantitative allele frequency reported as percentage
 - Predictive of resistance to *EGFR*-targeted early generation TKI therapy
 - Possibly predictive of response to *EGFR* T790M mutant-specific TKI therapy

- Negative
 - No *EGFR* T790M circulating mutation detected
 - Disease progression not related to *EGFR* T790M mutation

Limitations

- Limit of detection – ranges from 0.5% to 0.02% mutant alleles, based upon amplifiable DNA
- Optimal clinical testing intervals are unknown
- Mutations other than *EGFR* T790M are not detected
- Presence or absence of *EGFR* T790M does not guarantee a response to *EGFR* T790M-specific drug therapy

Lung Cancer Molecular Markers

Mutation testing to aid in selection of tyrosine kinase inhibitor (TKI) and/or immune checkpoint inhibitor therapy

Tests to Consider

Typical testing strategy

Minimum initial recommendation – lung cancer panel that includes simultaneous ordering for mutations in *ALK*, *EGFR*, and *ROS1* genes

Primary tests

Determine eligibility for TKI therapy (panel tests)

Lung Cancer Panel 2008894
- Screening panel detects
 - *EGFR* mutations
 - *ALK* and *ROS1* fusion proteins

Lung Cancer Panel with KRAS 2008895
- Screening panel detects
 - *EGFR* and *KRAS* mutations
 - *ALK* and *ROS1* fusion proteins

Determine eligibility for TKI therapy (single tests)

ALK (D5F3) with Interpretation by Immunohistochemistry 2007324
- Detects *ALK* fusion proteins

ALK (D5F3) by Immunohistochemistry with Reflex to ALK Gene Rearrangements by FISH 2011431
- Detects *ALK* fusion proteins and *ALK* gene rearrangements in solid tumors

ALK Gene Rearrangements by FISH, Lung 2006102
- Screening test for all *ALK* fusions
 - Use this test if the companion diagnostic test for crizotinib is required
 - Does not identify the translocation partner or variant

EGFR Mutation Detection by Pyrosequencing 2002440

KRAS Mutation Detection 0040248
- Predicts response to anti-EGFR and MAPK pathway therapies in a variety of malignancies (eg, colorectal and lung cancer)

c-MET by Immunohistochemistry 2008652
- Detects overexpression of c-MET protein

MET Gene Amplification by FISH 2013082
- Aids in prognostication and therapeutic decisions for neoplasms where amplification has been demonstrated

RET Gene Rearrangements by FISH 2012654
- Detects *RET* gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS1 by FISH 2008418
- Detects *ROS1* gene rearrangements in solid tumors
- Does not identify the translocation partner or variant

ROS 1 with Interpretation by Immunohistochemistry with Reflex to FISH if Equivocal or Positive 2008414
- Detects *ROS1* fusion proteins and *ROS1* gene rearrangements

Screening for immune checkpoint inhibitor therapy FDA-approved PD-L1 companion tests

PD-L1 22C3 IHC for NSCLC with Interpretation, pembrolizumab (KEYTRUDA) 2013284
- Companion diagnostic test to aid in prediction of response to pembrolizumab (KEYTRUDA) as first- or second-line monotherapy for patients with non-small cell lung cancer (NSCLC)
- Can be performed in conjunction with or instead of PD-L1 28-8
- For NSCLC specimens only
 - For gastroesophageal junction (GEJ), urothelial, and cervical specimens, see PD-L1 22C3 IHC with Combined Positive Score (CPS) Interpretation, pembrolizumab (KEYTRUDA) 3000197

PD-L1 28-8 pharmDX by Immunohistochemistry with Interpretation, nivolumab (OPDIVO) 2013684
- FDA-approved complementary codiagnostic test to aid in prediction of response to nivolumab (OPDIVO) for patients with nonsquamous NSCLC, melanoma, urothelial carcinoma, and head and neck squamous cell carcinoma (HNSCC)

© 2013 ARUP LABORATORIES | Last Update October 2018
Monitor for EGFR T790M resistance

EGFR T790M Mutation Detection in Circulating Tumor DNA by Digital Droplet PCR 2012868

- Monitor blood plasma or cerebrospinal fluid (CSF) for
 - Development of EGFR T790M drug-resistant mutation in patients administered TKI therapy for EGFR-mutant NSCLC
 - Response to therapy and disease progression in patients receiving EGFR T790M-specific TKIs

Related test

Solid Tumor Mutation Panel by Next Generation Sequencing 2007991

- Aids in therapeutic decisions for solid tumor cancers
- Simultaneously evaluates mutations in 44 genes, including AKT1, ALK, BRAF, EGFR, ERBB2, ERBB4, KRAS, NRAS, and PIKC3CA
- Does not detect translocations

Test Methodology

ALK
- Immunohistochemistry (IHC) using ALK clone D5F3
- Fluorescence in situ hybridization (FISH)

EGFR – polymerase chain reaction (PCR) and pyrosequencing
- Detects mutations at codons 719 (exon 18), 768 and 790 (exon 20), 858 and 861 (exon 21)
- Detects deletions in exon 19

EGFR T790M (serum) – digital droplet PCR

KRAS – PCR and pyrosequencing
- Detects mutations at codons 12, 13 (exon 2), and 61 (exon 3)

c-MET – IHC

MET – FISH

PD-L1 – IHC

RET – FISH
- Detects all RET gene fusions

ROS1 – IHC (using ROS1 clone D4D6) with FISH reflex if equivocal

Test Interpretation

Results
Single gene testing (includes genes in panels) – see table

Limitations
- Results must be interpreted in the context of clinical findings and morphological and other relevant data
- Results may be compromised if the recommended tissue-fixation procedures have not been followed

Disease Overview

Incidence
Lung cancer is the second most common cancer in U.S.

Treatment issues
- Lung cancer has poor response to traditional chemotherapy agents
 - Dismal 5-year outcome when using these agents
 - Newer targeted agents have better response rates in specific individuals and tumor types
- Tumor response rates to targeted therapy are closely associated with mutation status of the tumor, especially for adenocarcinoma or mixed adenocarcinoma subtypes
- Mutation status
 - Determines TKI therapy eligibility
 - Confers resistance to TKIs (e.g., EGFR T790M mutation)
 - Monitoring in serum for EGFR T790M mutation may detect TKI resistance sooner and alter treatment plans
- PD-L1 expression
 - May predict response to immune checkpoint inhibitor therapy

References
- Francis G, Stein S. Circulating cell-free tumour DNA in the management of cancer. Int J Mol Sci. 2015:16;14122-14142

<table>
<thead>
<tr>
<th>Gene</th>
<th>Testing method</th>
<th>Test result</th>
<th>May predict response to TKI therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK</td>
<td>IHC</td>
<td>Positive – cytoplasmic staining in tumor cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equivocal – very weak cytoplasmic staining visible only on higher power by microscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative – no cytoplasmic staining in tumor cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FISH</td>
<td>Positive – ALK gene rearrangements detected in ≥15% of nuclei</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not identify translocation partner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May predict response to TKI therapy</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td></td>
</tr>
<tr>
<td>EGFR T790M (serum)</td>
<td>Digital droplet PCR</td>
<td>Positive – mutation detected</td>
<td>Predicts resistance to TKI therapy</td>
</tr>
<tr>
<td>KRAS</td>
<td>PCR/pyrosequencing</td>
<td>Positive – mutation detected</td>
<td>May predict response to TKI therapy</td>
</tr>
</tbody>
</table>

© 2013 ARUP LABORATORIES | Last update October 2018
<table>
<thead>
<tr>
<th>Panel</th>
<th>Method</th>
<th>Scores</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| **MET** | FISH | Positive – detects gene amplification | • May predict response to crizotinib TKI therapy
• Associated with acquired resistance to EGFR inhibitors in 5-20% of patients with *EGFR*-mutated tumors |
| **RET** | FISH | Positive – gene rearrangements detected
• Does not identify translocation partner | May predict response to TKI therapy |
| **ROS1** | IHC
FISH reflex | Positive – uniform membranous staining in tumor cells
Equivocal – any degree of cytoplasmic staining or focal/weak membranous staining in tumor cells
• Reflexes to FISH for confirmation
 o Does not identify translocation partner | May predict response to TKI therapy |