Eosinophilia Panel by FISH ## **Indications for Ordering** - Diagnose and classify specific eosinophilic myeloid neoplasms - o Acute myeloid leukemia (AML) with inv(16) or t(16;16) - Myeloid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1 - Provide prognostic and predictive information for acute or chronic leukemia with eosinophilia - Monitor therapeutic response ### **Test Description** - Performed on cultured bone marrow (BM) - o Peripheral blood may be used - Multiple fluorescence in situ hybridization (FISH) probes target specific genes - o FGFR1 rearrangement - o FIP1L1-PDGFRA region rearrangement - o PDGFRB rearrangement - o CBFB/MYH11 rearrangement - Probes can be run as a panel or individually ### **Tests to Consider** ## **Primary test** #### Eosinophilia Panel by FISH 2002378 Diagnosis, prognosis, and monitoring for newly diagnosed acute or chronic leukemia with eosinophilia #### Related tests ## Chromosome Analysis, Bone Marrow 2002292 Diagnosis, prognosis, and monitoring of eosinophilic leukemia # <u>Chromosome Analysis, Bone Marrow with Reflex to Genomic Microarray 2007130</u> - Diagnosis, prognosis, and monitoring of eosinophilic disorders - If chromosome analysis is "normal" or "no growth," then genomic microarray testing will be added ## Cytogenomic SNP Microarray – Oncology 2006325 - Preferred test for fresh specimens at time of diagnosis for detecting prognostically important genomic abnormalities in leukemias/lymphomas and solid tumors involving o Loss/gain of DNA - Loss of heterozygosity (LOH) - Monitor disease progression and response to therapy #### Chromosome FISH, Interphase 2002298 - Specific FISH probes must be requested and include - PDGFRA - PDGFRB - ○JAK2 - +8 +9 - o Monosomy 7 or 7q deletion - ○5q deletion - 13q deletion - o 20q deletion #### Myeloproliferative Disorders Panel by FISH 2002360 - Detect specific recurrent genomic aberrations in suspected MPNs - o BCR/ABL1 - o PDGFRA - o PDGFRB - o FGFR1 ## Myeloid Malignancies Mutation Panel by Next Generation Sequencing 2011117 Assess for single gene mutations, including substitutions and insertions and deletions that may have diagnostic, prognostic, and/or therapeutic significance #### **Disease Overview** ### Consensus criteria - 2016 WHO classification of eosinophilic myeloid disorders - Myeloid and lymphoid neoplasms with PDGFRA rearrangement - Myeloid and lymphoid neoplasms with PDGFRB rearrangement - Myeloid and lymphoid neoplasms with FGFR1 rearrangement - Chronic eosinophilic leukemia-not otherwise specified (CEL-NOS) - Myeloid and lymphoid neoplasms with PCM1-JAK2 (provisional entity) #### Incidence/prevalence - PDGFRA/B- and FGFR1-related disorders are not well characterized - inv16; t(16;16) - 5-8% of AMLs, predominantly in childhood ## Diagnostic criteria See Table 1 #### Genetics See Table 2 ## **Test Interpretation** ## Analytic sensitivity/specificity ->95% #### **Results** - Normal no evidence of rearrangement - Abnormal rearrangement detected - Diagnostic of a clonal hematopoietic neoplasm○ inv(16); t(16;16) - Prognosis favorable in children and adults - Less favorable if KIT mutation is also present - Response to high dose cytarabine- and anthracyclinebased chemotherapy – yes - Remission rate 92% #### • 10-year survival – 55% - o PDGFRA and PDGFRB - Prognosis good - Response to tyrosine kinase inhibitors (TKIs) such as imatinib – yes - o FGFR1-rearranged - Prognosis poor - Response to TKIs such as imatinib currently unclear - Response to chemotherapy protocols developed for acute leukemias – no #### Limitations - Detects only rearrangements targeted by the probes - PDGFRB gene on 5q33 and FGFR1 gene on 8p11 have multiple rearrangement partners - o Rearrangement partners are not identified by this test #### Table 1 | WHO Classification | Features | Laboratory | | |---|---|---|--| | AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 | Presents as AML Myeloid sarcomas may be present at initial diagnosis or relapse | Morphology – acute myelomonocytic leukemia with increased eosinophils containing immature eosinophilic granules in the BM Peripheral eosinophilia is unusual Diagnosis of AML even if blasts <20% Genetics inv(16)(p13.1q22) or t(16;16)(p13.1;q22) found in most cases inv(16)(p13.1q22) is found in vast majority FISH or PCR may be necessary to document this genetic alteration Secondary cytogenetic abnormalities – +22, +8, del(7q) KIT mutations may be present | | | Myeloid and lymphoid neoplasms with PDGFRA rearrangement | Most frequently presents as CEL, but may present as AML, T-lymphoblastic lymphoma, or both Acute transformation can follow CEL presentation Organ infiltration by eosinophils Heart Lungs Central nervous system Gastrointestinal tract Splenomegaly in majority of patients Pronounced male predominance | Morphology Peripheral blood and BM eosinophilia (markedly elevated) Typically <20% blasts in peripheral blood and BM Increased BM mast cells common Genetics Absence of BCR-ABL1 fusion gene Most commonly associated with FIP1L1-PDGFRA fusion FISH or PCR is usually necessary to document this genetic alteration; cytogenetic studies are normal Other fusion genes have rarely been identified | | | Myeloid and lymphoid neoplasms with PDGFRB rearrangement | Presents with features of chronic myelomonocytic leukemia (usually with eosinophilia) Splenomegaly in majority of patients Male predominance, but much less marked than PDGFRA-associated neoplasms | Morphology Peripheral leukocytosis Hypercellular BM with typically <20% blasts Increased BM mast cells common Genetics Most common rearrangement – t(5;12)(q31-33;p13), resulting in ETV6-PDGFRB fusion | | | Myeloid and lymphoid neoplasms with FGFR1 rearrangement | Often presents with peripheral
eosinophilia in the context of
lymphadenopathy and lymphoblastic
leukemia/lymphoma Slight male predominance | Morphology AML, acute lymphoblastic leukemia (ALL), CEL (usually associated with peripheral blood or BM eosinophilia) Genetics Presence of t(8;13)(p11;q12) or a variant rearrangement at the 8p11 breakpoint leading to FGFR1 rearrangement Secondary cytogenetic abnormalities – trisomy 21 most often observed | | ## Table 2 | Gene | Structure/Function | Mutations | WHO Disease Association | |----------------|---|--|--| | CBFB-
MYH11 | CBFB 16q22 Core binding transcription factor MYH11 16p13.1 Codes for smooth muscle myosin heavy chain | inv(16)(p13.1q22) or (t16;16)(p13.1;q22) Inversion results in fusion of <i>CBFB</i> on 16q22 to <i>MYH11</i> on 16p13.1 | AML with inv(16)(p13.1q22) or
t(16;16)(p13.1;q22); previously
FAB M4Eo | | PDGFRA | Maps to 4q12 Cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family Results in a constitutively active tyrosine kinase oncoprotein | FIP1L1-PDGFRA rearrangement is a karyotypically occult 800-kb interstitial deletion (ie, CHIC2 deletion) | Myeloid and lymphoid neoplasms with PDGFRA rearrangement | | PDGFRB | Maps to 5q31-33 Cell surface tyrosine kinase
receptor for members of the
platelet-derived growth factor
family Results in a constitutively active
tyrosine kinase oncoprotein | 20 fusion partners reported Most common rearrangement – t(5;12)(q31-33;p13) resulting in ETV6-PDGFRB fusion | Myeloid and lymphoid neoplasms with PDGFRB rearrangement | | FGFR1 | Maps to 8p11 Cell surface tyrosine kinase Rearrangement results in constitutive activation of FGFR1 with the fusion of the FGFR1 C-terminal catalytic domain with unrelated proteins | >10 fusion partners identified Most common rearrangement – t(8;13)(p11;q12) resulting in ZNF198-FGFR1 fusion | Myeloid and lymphoid neoplasms with FGFR1 rearrangement |