

Cytogenomic Microarray – Oncology

Indications for Ordering

- Preferred test at time of diagnosis for detecting prognostically important genomic abnormalities in leukemias/lymphomas and solid tumors involving o Loss/gain of DNA o Loss of heterozygosity (LOH)
- Monitor disease progression and response to therapy

Test Description

Cytogenomic Molecular Inversion Probe Array, FFPE Tissue – Oncology

- Platform Affymetrix OncoScan
- Contains 220,000 SNP probes across the entire genome
- Average functional resolution 20 consecutive markers

Cytogenomic SNP Microarray - Oncology

- Platform Affymetrix CytoScan HD
- Oligo copy number and single-nucleotide polymorphism (SNP) array
- Contains >2.6 million copy number markers
- Includes 750,000 SNP probes
- · Detects copy number changes and LOH
- · Average marker spacing
 - Intragenic 880 base pairs (bp)
 - Intergenic (nongene backbone) 1,700 bp
 - Overall (gene and nongene backbone) 1,100 bp
- Average functional resolution
- o Deletion of 25 consecutive markers
- o Duplication of 50 consecutive markers

Tests to Consider

Primary tests

- Offer whole genome coverage
- Detect copy number changes and LOH
- Differ in type of specimen and array platform

<u>Cytogenomic Molecular Inversion Probe Array, FFPE Tissue –</u> Oncology 2010229

Formalin-fixed, paraffin-embedded (FFPE) tissue specimens

Cytogenomic SNP Microarray - Oncology 2006325

• Bone marrow or blood specimens

Related tests

- Fluorescence in situ hybridization (FISH) testing for specific balanced translocations may be considered, based on indication
- For a complete list of ARUP's oncology FISH tests, including probe targets and genes, see "Oncology FISH" on the <u>ARUP Genetics website</u> (www.aruplab.com/genetics/tests/fish)

<u>Myeloid Malignancies Somatic Mutation and Copy Number</u> Analysis Panel 2012182

 Panel for myeloid malignancies that combines cytogenomic microarray with a next generation sequencing panel targeting genes with diagnostic, prognostic, and/or therapeutic significance

Disease Overview

Diagnostic issues

- Gains, losses, and LOH occur in malignancies identification may be helpful for
 - o Diagnosis
 - o Prognosis and therapeutic decisions
 - o Monitoring disease progression and response to therapy
- Conventional cytogenetic (CC) analysis for detection of genetic abnormalities in oncology is hampered by
- o Lack of tumor cell growth in cell culture
- Subtle chromosomal abnormalities that are often missed
- FISH
 - o Improved rate of detection of clonal abnormalities when compared to CC, but only for the targeted region
 - o Detects balanced translocations
 - o Limited because only a few loci examined at a time
- Neither conventional karyotyping nor FISH testing can detect copy-neutral events that are associated with hematological malignancies
 - Often due to mutations and subsequent selection of mutant tumor-suppressor genes and oncogenes
- SNP microarray detects many of the chromosomal variants involving gains or losses in chromosomes with complex karyotypes across the genome

Test Interpretation

Results

- · Abnormal microarray
 - o Well-documented and clinically significant gain or loss or LOH detected
- Copy number change detected, clinical significance unknown
 - Copy number variation detected for which insufficient evidence is available to determine unequivocally the clinical significance
- Normal microarray
 - o No clinically significant abnormalities detected based on current knowledge at time of reporting

Limitations

- Low-level mosaicism (<15-20%) may not be detected
- May not be appropriate for individuals with expected lower levels of malignant cells
- FFPE specimens must contain a region with ≥50% tumor
- Not recommended for minimal residual disease
- Does not detect
 - o Balanced rearrangements
 - FISH should be used to evaluate specific balanced rearrangements according to indication
 - Base pair mutations and very small deletions/duplications
 - o Imbalances of the mitochondrial genome
 - o Positional information for chromosome rearrangements
 - o Low-level clones