Cytochrome P450 2D6, CYP2D6

Indications for Ordering

- Assess genetic risk of abnormal drug metabolism for drugs metabolized by CYP2D6
- Investigate genetic causes that might contribute to a personal or family history of an adverse drug event or therapeutic failure involving a drug metabolized by CYP2D6

Test Description

Polymerase chain reaction (PCR)/fluorescence monitoring

- Gene duplication also assessed

Tests to Consider

Primary test
Cytochrome P450 2D6 (CYP2D6) 15 Variants and Gene Duplication 2014547

- May aid in drug selection and dose planning for drugs metabolized by CYP2D6

Related tests

- Many drugs can be metabolized by alternative cytochrome P450 (CYP) enzymes
- Single gene tests available separately
 - Cytochrome P450 2C9, CYP2C9 – 2 Variants 2012766
 - Cytochrome P450 2C19, CYP2C19 – 9 Variants 2012769
 - Cytochrome P450 3A5 Genotyping, CYP3A5, 2 Variants 2012740
- Panel includes a comprehensive medication guide based on the genotypes detected
 - Cytochrome P450 Genotype Panel 2013098
 - See sample Enhanced Report for panel test
- Therapeutic drug monitoring and/or metabolic ratios may be useful for evaluating the pharmacokinetics of a particular drug for a particular patient
 - See the ARUP Laboratory Test Directory (www.aruplab.com/) for a list of available drug-specific testing (search by test name or number)

Disease Overview

Prevalence

- Allele frequencies differ among ethnic groups
- See Table 1 for allele frequencies

Predicted Phenotypes

- Poor metabolizer
 - 2 no function alleles
 - May result in few to no drug metabolites when the parent drug is a substrate of CYP2D6; activity score prediction is 0 of 2
- Intermediate metabolizer
 - 1 no function allele and 1 decreased function allele
 - May result in lower levels of drug metabolites when the parent drug is a substrate of CYP2D6; activity score prediction is <1 of 2
 - Avoid concomitant use of CYP2D6 inhibitors to prevent conversion of intermediate metabolizer to a poor metabolizer
- Normal metabolizer
 - 2 functional alleles
 - Normal levels of drug metabolites when the parent drug is a substrate of CYP2D6
 - Activity score prediction is 1-2 of 2
 - Avoid concomitant use of CYP2D6 inhibitors to prevent conversion of normal metabolizer to an intermediate or poor metabolizer
- Ultrarapid metabolizer
 - More than 2 copies of functional alleles (gene duplication)
 - May result in higher levels of drug metabolites when the parent drug is a substrate of CYP2D6; activity score prediction is >2
Treatment issues

- CYP2D6 is an isozyme involved in the metabolism of up to 25% of all clinically used drugs, including
 - Antiestrogens (eg, tamoxifen)
 - Alpha blockers
 - Analgesics
 - Anticonvulsives
 - Antidepressives (eg, nortriptyline)
 - Antidiabetics
 - Antihypertensives
 - Antipsychotics
 - Antitussives (eg, codeine)
 - Beta blockers
 - Cardioactives
 - Norepinephrine reuptake inhibitors
 - Stimulants

- Some drugs are
 - Activated by the pathway (eg, codeine)
 - Inactivated by the pathway (eg, nortriptyline)

- Pharmacogenetic variation may lead to inappropriate concentrations of drugs and metabolites, resulting in
 - Toxicity and risk for adverse drug reactions
 - Lack of therapeutic benefit

- Actual metabolic phenotype is subject to
 - Drug/drug and drug/food interactions
 - Clinical factors
 - Other nongenetic factors

Treatment guidelines

- The Clinical Pharmacogenetics Implementation Consortium (CPIC) has published dosing guidelines for CYP2D6 genotypes and
 - Codeine – refer to CPIC dosing guideline
 (www.pharmgkb.org/guideline/PA166104996)
 - Tricyclic antidepressants (eg, nortriptyline) – refer to CPIC dosing guideline
 (www.pharmgkb.org/guideline/PA166105006)
 - Selective serotonin reuptake inhibitors (eg, citalopram) – refer to CPIC dosing guideline
 (www.pharmgkb.org/guideline/PA166127638)

Genetics

Gene – CYP2D6

Inheritance – autosomal codominant

Penetrance – drug dependent

Variants detected – see Table 2

Structure/function – located on chromosome 22

Test Interpretation

Sensitivity/specificity

- Clinical sensitivity – drug dependent
- Analytical sensitivity/specificity – >99%

Results

- By report
- No variants detected (negative) – predictive of *1 functional allele and normal enzymatic activity

Limitations

- Only the targeted CYP2D6 variants will be detected
- Diagnostic errors can occur due to rare sequence variations
- Risk of therapeutic failure or adverse reactions with CYP2D6 substrates may be affected by genetic and nongenetic factors that are not detected by this test
- This result does not replace the need for therapeutic drug or clinical monitoring

References

<table>
<thead>
<tr>
<th>Allele</th>
<th>African</th>
<th>Asian</th>
<th>Caucasian</th>
<th>Middle Eastern</th>
<th>Oceanian</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2D62 or CYP2D62A</td>
<td>17.6%</td>
<td>21.2%</td>
<td>27.6%</td>
<td>21.7%</td>
<td>1.2%</td>
</tr>
<tr>
<td>CYP2D6*3</td>
<td>0.2%</td>
<td>0%</td>
<td>1.3%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>CYP2D6*4</td>
<td>4.9%</td>
<td>4.6%</td>
<td>18.2%</td>
<td>7.8%</td>
<td>2.5%</td>
</tr>
<tr>
<td>CYP2D6*5</td>
<td>6.3%</td>
<td>4.3%</td>
<td>2.8%</td>
<td>2.3%</td>
<td>4.3%</td>
</tr>
<tr>
<td>CYP2D6*6</td>
<td>0.1%</td>
<td>0%</td>
<td>1.0%</td>
<td>0.6%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*7</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*8</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*9</td>
<td>0.3%</td>
<td>0.5%</td>
<td>2.1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*10</td>
<td>5.3%</td>
<td>30.2%</td>
<td>3.0%</td>
<td>3.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>CYP2D6*12</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*14</td>
<td>0.1%</td>
<td>0.4%</td>
<td>0%</td>
<td>0.2%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*17</td>
<td>19.0%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>1.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CYP2D6*29</td>
<td>7.7%</td>
<td>0%</td>
<td>0.1%</td>
<td>0.8%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*36</td>
<td>0.3%</td>
<td>0.7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>CYP2D6*41</td>
<td>9.2%</td>
<td>4.9%</td>
<td>7.9%</td>
<td>19.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>CYP2D6xN (gene duplication)</td>
<td>4.7%</td>
<td>1.6%</td>
<td>2.6%</td>
<td>7.1%</td>
<td>11.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele Designation</th>
<th>Nucleotide Change (Numbered According to M33388 sequence)</th>
<th>Reference Sequence Identifier</th>
<th>Predicted Enzyme Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>2850C>T</td>
<td>rs16947</td>
<td>Functional (normal)</td>
</tr>
<tr>
<td>*2A</td>
<td>-1584C>G; 2850C>T</td>
<td>rs1080985, rs16947</td>
<td>Functional (normal)</td>
</tr>
<tr>
<td>*3</td>
<td>2549delA</td>
<td>rs35742686</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*4</td>
<td>100C>T; 1846G>A</td>
<td>rs3892097</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*5</td>
<td>Gene deletion</td>
<td></td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*6</td>
<td>1707delT</td>
<td>rs5030655</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*7</td>
<td>2935A>C</td>
<td>rs5030867</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*8</td>
<td>1758G>T; 2850C>T</td>
<td>rs5030865</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*9</td>
<td>2613-5delAGA</td>
<td>rs5030656</td>
<td>Decreased function</td>
</tr>
<tr>
<td>*10</td>
<td>100C>T</td>
<td>rs1065852</td>
<td>Decreased function</td>
</tr>
<tr>
<td>*12</td>
<td>124G>A; 2850C>T</td>
<td>rs5030862</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*14</td>
<td>1758G>A; 2850C>T</td>
<td>rs5030865</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*17</td>
<td>1023C>T; 2850C>T</td>
<td>rs28371706</td>
<td>Decreased function</td>
</tr>
<tr>
<td>*29</td>
<td>1659G>A; 2850C>T</td>
<td>rs59421388</td>
<td>Decreased function</td>
</tr>
<tr>
<td>*36</td>
<td>*10 carrying a CYP2D7-derived exon 9 conversion</td>
<td></td>
<td>Nonfunctional</td>
</tr>
<tr>
<td>*41</td>
<td>2988G>A; 2850C>T</td>
<td>rs28371725</td>
<td>Decreased function</td>
</tr>
</tbody>
</table>

Duplication of functional alleles | Increased function |