Cytochrome P450 2C19, CYP2C19

Indications for Ordering

- Assess genetic risk of abnormal drug metabolism for drugs metabolized by CYP2C19
- Investigate genetic causes that might contribute to a personal or family history of an adverse drug event or therapeutic failure involving a drug metabolized by CYP2C19

Test Description

Polymerase chain reaction (PCR)/fluorescence monitoring

- Variant alleles detected – *2 to *4, *6 to *10, *17

Tests to Consider

Primary test

Cytochrome P450 2C19, CYP2C19 – 9 Variants 2012769

- May aid in drug selection and dose planning for drugs metabolized by CYP2C19

Related tests

- Many drugs can be metabolized by alternative cytochrome P450 (CYP) enzymes
 - Single gene tests available separately
 - Cytochrome P450 2C9, CYP2C9 – 2 Variants 2012766
 - Cytochrome P450 2D6 (CYP2D6) 15 Variants and Gene Duplication 2014547
 - Cytochrome P450 3A5 Genotyping, CYP3A5, 2 Variants 2012740

- Panel includes a comprehensive medication guide based on the genotypes detected
 - **Cytochrome P450 Genotype Panel 2013098**
 - See sample [Enhanced Report](#) for panel test

- Therapeutic drug monitoring and/or metabolic ratios may be useful for evaluating the pharmacokinetics of a particular drug, for a particular patient
 - See the [ARUP Laboratory Test Directory](#) (www.arulab.com/) for a list of available drug-specific testing (search by test name or number)

Disease Overview

Prevalence – allele frequencies differ among ethnic groups

- Most common nonfunctional alleles are *2 and *3
 - CYP2C19*2 – Oceanian 54.9%, South Asian 34.4%, African American 18.3%, Caucasian 14.6%, Middle Eastern 13.2%
 - CYP2C19*3 – Oceanian 13.9%, East Asian 8.5%, Middle Eastern 2.6%, Caucasian 0.6%, African American 0.3%

- Increased function allele
 - CYP2C19*17 – Caucasian 21.5%, African American 19.4%, South Asian 16.5%, Oceanian 2.5%

Predicted Phenotypes

- Poor metabolizer phenotype
 - 2 no function alleles
 - May result in few to no drug metabolites when the parent drug is a substrate of CYP2C19

- Intermediate metabolizer phenotype
 - 1 no function allele with a functional or *17 allele
 - May result in lower levels of drug metabolites when the parent drug is a substrate of CYP2C19

- Normal metabolizer
 - 2 functional alleles
 - Normal levels of drug metabolites when the parent drug is a substrate of CYP2C19

- Rapid metabolizer
 - One CYP2C19*17 with a functional allele
 - May result in moderately higher levels of drug metabolites when the parent drug is a substrate of CYP2C19

- Ultrarapid metabolizer
 - 2 *17 alleles
 - May result in much higher levels of drug metabolites when the parent drug is a substrate of CYP2C19

Treatment issues

- CYP2C19 is an isoenzyme involved in the metabolism of many clinically used drugs, including
 - Antidepressants
 - Antimalarials
 - Clopidogrel
 - Diazepam
 - Phenytoin
 - Proton pump inhibitors
 - R-warfarin
 - Selective serotonin reuptake inhibitors
 - Tamoxifen
Some drugs are
- Activated by the pathway (eg, clopidogrel)
- Inactivated by the pathway (eg, citalopram)
Pharmacogenetic variation may lead to inappropriate concentrations of drugs and metabolites, resulting in
- Toxicity and risk of adverse drug reactions
- Lack of therapeutic benefit
- Actual metabolic phenotype is subject to
 - Drug/drug interactions
 - Clinical factors
 - Other nongenetic factors

Treatment guidelines
- The Clinical Pharmacogenetics Implementation Consortium (CPIC) has published dosing guidelines for CYP2C19 genotypes and
 - Clopidogrel (eg, Plavix) – refer to CPIC dosing guideline (https://www.pharmgkb.org/guideline/PA166104948)
 - Tricyclic antidepressants (eg, amitriptyline) – refer to CPIC dosing guideline (https://www.pharmgkb.org/guideline/PA166105006)
 - Selective serotonin reuptake inhibitors (eg, citalopram) – refer to CPIC dosing guideline (https://www.pharmgkb.org/guideline/PA166127638)

Genetics
Gene – CYP2C19
Inheritance – autosomal codominant
Penetrance – drug dependent
Variants detected – see table
Structure/function – located on chromosome 10

Test Interpretation
Sensitivity/specificity
- Clinical sensitivity – drug dependent
- Analytical sensitivity/specificity – >99%

Results
- By report

Limitations
- Only the targeted CYP2C19 variants will be detected
- Diagnostic errors can occur due to rare sequence variations
- Risk of therapeutic failure or adverse reactions with CYP2C19 substrates may be affected by genetic and nongenetic factors that are not detected by this test
- This result does not replace the need for therapeutic drug or clinical monitoring

References

<table>
<thead>
<tr>
<th>Variants Detected</th>
<th>Allele Designation</th>
<th>Nucleotide Change (NM_000769)</th>
<th>Reference Sequence Identifier</th>
<th>Variant Effect</th>
<th>Predicted Enzyme Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*2</td>
<td>c.681G>A</td>
<td>rs4244285</td>
<td>Splicing defect</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*3</td>
<td>c.636G>A</td>
<td>rs4986893</td>
<td>Creates stop codon</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*4</td>
<td>c.1A>G</td>
<td>rs28399504</td>
<td>Loss of initiation codon</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*6</td>
<td>c.395G>A</td>
<td>rs72552267</td>
<td>R132Q</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*7</td>
<td>c.819+2T>A</td>
<td>rs72558186</td>
<td>Splicing defect</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*8</td>
<td>c.358T>C</td>
<td>rs41291556</td>
<td>W120R</td>
<td>Nonfunctional</td>
</tr>
<tr>
<td></td>
<td>*9</td>
<td>c.431G>A</td>
<td>rs17884712</td>
<td>R114H</td>
<td>Decreased function</td>
</tr>
<tr>
<td></td>
<td>*10</td>
<td>c.680C>T</td>
<td>rs6413438</td>
<td>P227L</td>
<td>Decreased function</td>
</tr>
<tr>
<td></td>
<td>*17</td>
<td>c.-806C>T</td>
<td>rs12248560</td>
<td>Increased gene transcription</td>
<td>Increased function</td>
</tr>
</tbody>
</table>