Osteoporosis Monitoring

Indications for Ordering
- Monitor response to antiresorptive therapy in postmenopausal women and individuals with osteoporosis
- Does not replace bone mineral density (BMD) screening to diagnose osteoporosis

Test Description
Quantitative electrochemiluminescent immunoassay

Tests to Consider
Primary test
C-Telopeptide, Beta-Cross-Linked, Serum 0070416
 - Preferred test to measure bone resorption and monitor response to antiresorptive therapy
 - Bisphosphonates
 - Hormone replacement therapy

Related tests – see table

Disease Overview

Prevalence
- ~10 million people in U.S. have osteoporosis
 - 80% women
- ~43 million Americans have low bone mass, which can increase risk for osteoporosis
 - Can lead to fractures and other complications

Age of onset – usually >50 years

Symptoms
- Often asymptomatic
- Sentinel fracture
 - Wrist, hip, or vertebral fracture
- Symptomatic individuals
 - Height loss
 - Kyphosis
 - Bone pain
 - History of previous fractures

Physiology
- Osteoporosis is diagnosed by BMD screening
- After effective antiresorptive therapy, concentration of bone markers may return to premenopausal level
 - Long-term treatment of postmenopausal women with bisphosphonates can increase bone density and reduce fractures by ~50%
- Cross-linked C-terminal (CTX) telopeptides
 - Proteolytic fragments of type 1 collagen formed during bone resorption
 - Biochemical marker of bone resorption
 - Can be detected in serum and urine
 - Provides earlier indication of therapeutic response than BMD
 - Changes in bone density can be detected within 3 months by measuring CTX
 - 12-24 months may be required to detect any changes in bone density by radiographic methods

Recommended follow-up testing
- Monitor response 3-6 months after starting antiresorptive therapy
- Initial testing should occur prior to beginning therapy

Test Interpretation

Results
- Decrease in CTX concentration of 35-55% from baseline level after 3-6 months
 - Effective antiresorptive therapy
- No decrease in CTX concentration
 - Ineffective antiresorptive therapy
 - Lack of compliance

Limitations
- Baseline concentration of CTX must be established before treatment begins
- Intraindividual variability of CTX must be considered when interpreting test results
 - Diet, exercise, time of day
- May be significant overlap in CTX between individuals with and without osteoporosis
- Test result cannot be used to predict fractures
- CTX concentration may be higher than expected
 - Individuals with reduced kidney function
 - Reduced excretion of CTX
<table>
<thead>
<tr>
<th>Commonly Used Bone Turnover Markers</th>
<th>ARUP Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Formation Markers</td>
<td></td>
</tr>
<tr>
<td>Serum procollagen type 1 N-terminal propeptide</td>
<td>Procollagen Type I Intact N-Terminal Propeptide [0070236]</td>
</tr>
<tr>
<td>Serum osteocalcin</td>
<td>Osteocalcin by Electrochemiluminescent Immunoassay [0020728]</td>
</tr>
<tr>
<td>Serum bone-specific alkaline phosphatase</td>
<td>Bone Specific Alkaline Phosphatase [0070053]</td>
</tr>
<tr>
<td>Bone Resorption Markers</td>
<td></td>
</tr>
<tr>
<td>Urine or serum N-telopeptide</td>
<td>N-Telopeptide, Cross-Linked, Urine [0070062]</td>
</tr>
<tr>
<td></td>
<td>N-Telopeptide, Cross-Linked, Serum [0070500]</td>
</tr>
<tr>
<td>Urine pyridinoline</td>
<td>Pyridinium Crosslinks (Total), Urine [0070213]</td>
</tr>
<tr>
<td></td>
<td>Pyridinoline and Deoxypyridinoline by HPLC [0080342]</td>
</tr>
<tr>
<td>Urine deoxypyridinoline</td>
<td>Deoxypyridinoline Crosslinks, Urine [0070212]</td>
</tr>
<tr>
<td></td>
<td>Pyridinoline and Deoxypyridinoline by HPLC [0080342]</td>
</tr>
</tbody>
</table>