Chronic Lymphocytic Leukemia by FISH

Indications for Ordering

Prognostically stratify chronic lymphocytic leukemia (CLL) patients into risk groups
- For individuals who have been diagnosed with CLL by clinical criteria
 - Lymphocytosis of greater than 5x10⁹ cells/μL
 - More than 50% mature-appearing lymphocytes
 - Characteristic immunophenotype of CD5, CD19, CD20, and CD23 expression, monoclonal kappa or lambda expression, and dim surface immunoglobulin expression

Test Description

- FISH probes for
 - ATM (11q22.3)
 - Chromosome 12 centromere (trisomy 12)
 - D13S319 (13q14.3)
 - p53 (17p13.1)
- Blood or bone marrow specimens

Tests to Consider

Primary Tests

Chromosome FISH, CLL Panel 2002295
- Alternate test to detect prognostically important genomic abnormalities in CLL

Cytogenomic SNP Microarray – Oncology 2006325
- Preferred test at time of diagnosis for detecting prognostically important genomic abnormalities in leukemias/lymphomas and solid tumors involving
 - Loss/gain of DNA
 - Loss of heterozygosity (LOH)
- Monitor disease progression and response to therapy

Related Tests

Leukemia/Lymphoma Phenotyping Evaluation by Flow Cytometry 3001780
- Aid in evaluation of hematopoietic neoplasms
- Expression of CD38 typically performed for CLL diagnosis and followup

IGHV Mutation Analysis by Sequencing 0040227
- Determine risk group in newly diagnosed CLL

Disease Overview

Prevalence – CLL is the most common form of adult leukemia in the Western world

Prognostic Issues

- Highly variable clinical course
 - Life span of a few months post diagnosis to >20 years
 - “Watch and wait” approach used for many patients
- Current clinical staging systems (Rai, Binet) do not accurately predict the clinical course of disease if tumor burden is low at time of diagnosis
 - Molecular markers are predictive for many patients
- Predictors of survival
 - Genomic gains and losses (cytogenetic testing using FISH, genomic microarray)
 - Median survival time for the five major prognostic groups
 - p53 deletion – 32 months
 - ATM deletion – 79 months
 - Normal FISH – 111 months
 - Trisomy 12 – 114 months
 - 13q14 monoallelic deletions – 133 months
 - IGHV mutation status (molecular testing)
 - Surface CD38 expression (flow cytometry)
- FISH can detect the most common genomic abnormalities in CLL
 - Abnormalities include
 - Trisomy 12
 - Unbalanced rearrangements involving 14q32
 - Deletions of 13q14, 6q21, 17p, and 11q22-23
 - Copy number imbalances across the genome
- Genomic microarray may be considered as an alternative to FISH for detection of genomic gains and losses
 - Microarray has the added benefit of detection of
 - Most common aberrations in CLL
 - Copy number imbalances across the genome
- Using higher numbers of probes may increase sensitivity of test
Structure/Function

- Tumor suppressors
 - del(17p) typically involves TP53 locus
 - del(11q) contains ATM gene
- Loss of p53 function or its activator, the ATM gene, is associated with treatment resistance and clinically aggressive disease
- del(17p) and/or del(11q) correlate with nonmutated IGHV genes
- Karyotypic evolution may occur over course of disease

Test Interpretation

Positive results – chromosomal aberration detected

- Least favorable outcome
 - del(17p), followed by del(11q), then trisomy 12q
- Favorable outcome
 - del(13q)
 - Normal diploid karyotype

Limitations

- Panel only detects prognostically important imbalances (gain or loss of DNA) in the chromosomes of interest
- Chromosome alterations outside the regions complementary to these FISH probes will not be detected
- Ideal testing is when significant disease is present