Citrin Deficiency (SLC25A13) Sequencing

Indications for Ordering

- Abnormal newborn screen suggestive of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD)
- Diagnostic testing for individuals with
 - Clinical and/or biochemical evidence of citrullinemia type II (CTNL2)
 - Failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD) or NICCD
- Carrier testing for the reproductive partner of an individual affected with, or a carrier of, CTNL2 or NICCD
- Useful when
 - Phenotype is unclear
 - Biochemical values are borderline
 - Need to distinguish citrin deficiency from citrullinemia type I (due to variants in ASS1 gene)

Test Description

Polymerase chain reaction followed by bidirectional sequencing of the entire coding region and intron/exon boundaries of the SLC25A13 gene

Tests to Consider

Typical testing strategy

- Biochemical testing
 - Amino Acids Quantitative, Plasma
 - Ammonia, Plasma
 - Galactose-1-Phosphate in Red Blood Cells
 - Orotic Acid and Orotidine, Urine
- Molecular testing
 - Citrin Deficiency (SLC25A13) Sequencing

Primary test

- Citrin Deficiency (SLC25A13) Sequencing 2006261
 - Use to confirm a diagnosis of citrullinemia type II (or citrin deficiency) following clinical and/or biochemical findings

Related test

- Familial Mutation, Targeted Sequencing 2001961
 - Useful when a pathogenic familial variant identifiable by sequencing is known

Disease Overview

Incidence/prevalence – varies by population

- Asian – 1/65 carrier
- Prevalence in those of Japanese descent
 - CTLN2 phenotype – 1/100,000
 - NICCD phenotype – 1/19,000

Pathophysiology

- Citrin is a mitochondrial aspartate-glutamate carrier in the inner mitochondrial membrane
 - Involved in both the urea cycle and the aspartate/malate NADH shuttle
- Deficiency results in
 - Decreased aspartate transport
 - Decreased ability of enzyme argininosuccinate synthase to produce argininosuccinate
 - Increased NADH:NAD+ ratio
 - Impacts
 - Glycolysis
 - Gluconeogenesis
 - Fatty acid synthesis

Clinical presentation

<table>
<thead>
<tr>
<th></th>
<th>NICCD</th>
<th>FTTDCD</th>
<th>CTLN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>Infancy (<1 year)</td>
<td>>1 year-11 years</td>
<td>>11 years</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transient intrahepatic cholestasis</td>
<td></td>
<td></td>
<td>Recurrent episodes of neuropsychiatric symptoms</td>
</tr>
<tr>
<td>Symptoms often disappear by age 1</td>
<td></td>
<td></td>
<td>Loss of memory</td>
</tr>
<tr>
<td>Some will develop CTNL2</td>
<td></td>
<td></td>
<td>Disorientation</td>
</tr>
<tr>
<td>~40% have abnormal newborn screen</td>
<td></td>
<td></td>
<td>Flapping tremor</td>
</tr>
<tr>
<td>Galactose</td>
<td></td>
<td></td>
<td>Aberrant behaviors</td>
</tr>
<tr>
<td>Methionine</td>
<td></td>
<td></td>
<td>Seizures</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td></td>
<td></td>
<td>Fatty liver infiltration</td>
</tr>
<tr>
<td>Growth retardation</td>
<td></td>
<td></td>
<td>Pancreatitis</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td></td>
<td></td>
<td>Hyperlipidemia</td>
</tr>
<tr>
<td>Echinocytosis</td>
<td></td>
<td></td>
<td>Carbohydrate aversion</td>
</tr>
<tr>
<td>Aversion to carbohydrates develops as the child ages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth retardation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Age of onset
- **Infancy (<1 year)**
- **>1 year -11 years**
- **>11 years**

Provocation of symptoms
- • Alcohol/carbohydrate intake
- • Medication
- • Surgery

Metabolic derangements
<table>
<thead>
<tr>
<th>NICCD</th>
<th>FTTDCD</th>
<th>CTLN2</th>
</tr>
</thead>
</table>
| • Hyperammonemia
• Elevated
 o Alpha fetoprotein
 o Arginine
 o Bile acids
 o Bilirubin
 o Citrulline
 o Galactose
 o Methionine
 o Threonine
 o Tyrosine
 • Urine succinylacetone – normal
 • Hemolytic anemia
 • Hypoglycemia
 • Coagulation factor deficiencies
 • 40% have abnormal newborn screen (elevated galactose and/or citrulline/methionine on second screen) | • Hypoglycemia
• Ammonia and citrulline – normal or slightly elevated
• Arginine – usually normal
• Lactate:pyruvate ratio – elevated | • Hyperammonemia
• Elevated
 o Plasma citrulline
 o Arginine
 o Threonine:serine ratio
 o Pancreatic secretory trypsin inhibitor
 • Liver-specific argininosuccinate synthetase – deficient |

Genetics
Gene – SLC25A13

Inheritance – autosomal recessive

Variants
- >50 pathogenic variants identified
- Two variants account for 70% of gene variants in individuals of Japanese descent
 - c.1177+G>A
 - c.851_854del
- No genotype/phenotype correlations

Test Interpretation

Sensitivity/specificity
- Clinical sensitivity – >95%
- Analytical sensitivity/specificity – 99%

Results
- Two pathogenic SLC25A13 gene variants detected
 - Predicts citrin deficiency
- One pathogenic SLC25A13 gene variant detected
 - Individual is at least a carrier for citrin deficiency
 - If individual is clinically affected, an undetected variant may be present on opposite chromosome
- Lack of gene variant reduces the likelihood of citrin deficiency or carrier state
- Variants of unknown clinical significance may be identified

Limitations
- Diagnostic errors can occur due to rare sequence variants
- Not detected
 - Regulatory region or deep intronic variants
 - Large deletions and/or duplications
- Other genes associated with urea cycle disorders are not evaluated