Citrin Deficiency (SLC25A13) Sequencing

Indications for Ordering

- Abnormal newborn screen suggestive of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD)
- Diagnostic testing for individuals with
 - Clinical and/or biochemical evidence of citrullinemia type II (CTNL2)
 - Failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD) or NICCD
- Carrier testing for the reproductive partner of an individual affected with, or a carrier of, CTNL2 or NICCD
- Useful when
 - Phenotype is unclear
 - Biochemical values are borderline
 - Need to distinguish citrin deficiency from citrullinemia type I (due to variants in ASS1 gene)

Test Description

Polymerase chain reaction followed by bidirectional sequencing of the entire coding region and intron/exon boundaries of the SLC25A13 gene

Tests to Consider

Typical testing strategy

- Biochemical testing
 - Amino Acids Quantitative, Plasma
 - Ammonia, Plasma
 - Galactose-1-Phosphate in Red Blood Cells
 - Orotic Acid and Orotidine, Urine
- Molecular testing
 - Citrin Deficiency (SLC25A13) Sequencing

Clinical presentation

<table>
<thead>
<tr>
<th></th>
<th>NICCD</th>
<th>FTTDCD</th>
<th>CTLN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>Infancy (<1 year)</td>
<td>>1 year-11 years</td>
<td>>11 years</td>
</tr>
</tbody>
</table>
| Symptoms | • Transient intrahepatic cholestasis
 • Symptoms often disappear by age 1
 o Some will develop CTNL2
 o ~40% have abnormal newborn screen
 ▪ Galactose
 ▪ Methionine
 ▪ Phenylalanine
 • Growth retardation
 • Hepatomegaly
 • Echinocytosis
 • Aversion to carbohydrates develops as the child ages
 • Growth retardation
 • Fatigue
 • Pancreatitis
 • Fatty liver
 • Hepatoma
 • Dyslipidemia
 • Recurrent episodes of neuropsychiatric symptoms
 o Loss of memory
 o Disorientation
 o Flapping tremor
 o Aberrant behaviors
 o Seizures
 • Fatty liver infiltration
 • Pancreatitis
 • Hyperlipidemia
 • Carbohydrate aversion
<table>
<thead>
<tr>
<th>NICCD</th>
<th>FTTDCD</th>
<th>CTLN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>Infant (<1 year)</td>
<td>>1 year-11 years</td>
</tr>
<tr>
<td>Provocation of symptoms</td>
<td>• Hyperammonemia</td>
<td>• Hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>• Elevated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alpha fetoprotein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Arginine</td>
<td>• Arginine</td>
</tr>
<tr>
<td></td>
<td>• Bile acids</td>
<td>• Bile acids</td>
</tr>
<tr>
<td></td>
<td>• Bilirubin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Citrulline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Galactose</td>
<td>• Hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>• Methionine</td>
<td>• Ammonia and citrulline – normal or slightly elevated</td>
</tr>
<tr>
<td></td>
<td>• Threonine</td>
<td>• Arginine – usually normal</td>
</tr>
<tr>
<td></td>
<td>• Tyrosine</td>
<td>• Lactate:pyruvate ratio – elevated</td>
</tr>
<tr>
<td></td>
<td>• Urine succinylacetone – normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic derangements</td>
<td></td>
<td>• Hyperammonemia</td>
</tr>
<tr>
<td></td>
<td>• Hemolytic anemia</td>
<td>• Elevated</td>
</tr>
<tr>
<td></td>
<td>• Hypoglycemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coagulation factor deficiencies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 40% have abnormal newborn screen (elevated galactose and/or citrulline/methionine on second screen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genetics

Gene – SLC25A13

Inheritance – autosomal recessive

Variants
- >50 pathogenic variants identified
- Two variants account for 70% of gene variants in individuals of Japanese descent
 - c.1177+G>A
 - c.851_854del
- No genotype/phenotype correlations

Test Interpretation

Sensitivity/specificity
- Clinical sensitivity – >95%
- Analytical sensitivity/specificity – 99%

Results

- Two pathogenic SLC25A13 gene variants detected
 - Predicts citrin deficiency
- One pathogenic SLC25A13 gene variant detected
 - Individual is at least a carrier for citrin deficiency
 - If individual is clinically affected, an undetected variant may be present on opposite chromosome
- Lack of gene variant reduces the likelihood of citrin deficiency or carrier state
- Variants of unknown clinical significance may be identified

Limitations

- Diagnostic errors can occur due to rare sequence variants
- Not detected
 - Regulatory region or deep intronic variants
 - Large deletions and/or duplications
- Other genes associated with urea cycle disorders are not evaluated