

Ashkenazi Jewish Genetic Diseases

Indications for Ordering

Carrier screening for 16 disorders in individuals of Ashkenazi Jewish descent who are

- Planning a pregnancy
- Currently pregnant

Test Description

Polymerase chain reaction and fluorescence monitoring

Tests to Consider

Primary tests

Ashkenazi Jewish Diseases, 16 Genes 0051415

- Preferred gene panel for carrier screening for individuals of Ashkenazi Jewish descent
- Detects 51 variants associated with 16 disorders common in Ashkenazi Jews

Cystic Fibrosis (CFTR) 165 Pathogenic Variants 2013661

- Carrier screening for expectant individuals and those planning a pregnancy AND diagnostic testing for individuals with symptoms of classic CF
- Not included in prenatal screening panel for Ashkenazi Jews

Related tests

Assess gene variant(s) associated with a specific disorder

- ABCC8-Related Hyperinsulinism, 3 Variants 2013725
- Bloom Syndrome (BLM), 1 Variant 0051433
- Canavan Disease (ASPA), 4 Variants 0051453
- Dysautonomia, Familial (IKBKAP), 2 Variants 0051463
- Fanconi Anemia, Group C (FANCC), 2 Variants 0051468
- Gaucher Disease (GBA), 8 Variants 0051438
- Glycogen Storage Disease, Type 1A (G6PC), 9 Variants 2013740
- Joubert Syndrome Type 2 (TMEM216), 1 Variant 2013909
- <u>Lipoamide Dehydrogenase Deficiency (DLD)</u>, 2 Variants 2013735
- Maple Syrup Urine Disease, Type 1B (BCKDHB), 3 Variants 2013730
- Mucolipidosis Type IV (MCOLN1), 2 Variants 0051448
- NEB-Related Nemaline Myopathy, 1 Variant 2013745
- Niemann-Pick Type A (SMPD1), 4 Variants 0051458
- Tay-Sachs Disease (HEXA), 7 Variants 0051428
- <u>Usher Syndrome</u>, <u>Types 1F and 3 (*PCDH15* and *CLRN1*), 2 <u>Variants 2013750</u></u>

Disease Overview

Symptoms - see Table 1

Incidence and carrier frequency

- See Table 1 for incidence and carrier frequency in Ashkenazi Jews
- Largely unknown in non-Ashkenazi Jews

Screening

- Routine preconception or prenatal carrier screening for genetic diseases common in Ashkenazi Jews is recommended by
 - American Congress of Obstetrics and Gynecology (ACOG) for the following conditions (ACOG Committee on Genetics, 2009)
 - Canavan disease
 - Cystic fibrosis
 - Familial dysautonomia
 - Tay-Sachs disease
 - American College of Medical Genetics (ACMG) for the following conditions (Gross, 2008)
 - Four disorders recommended by ACOG listed above in addition to
 - Bloom syndrome
 - Fanconi anemia group C
 - Gaucher disease
 - Mucolipidosis type IV
 - Niemann-Pick disease type A
- Screening for a specific disorder may be offered to non-Jewish individuals
- With relatives who carry one or more variants included in the test
- Whose partners are carriers of one of the panel disorders, although detection rate for non-Jews is variable by disorder and largely unknown

Genetics

Genes/variants - see Table 2

Inheritance - autosomal recessive

Test Interpretation

Sensitivity/specificity

- Clinical sensitivity/specificity see Table 2
- Analytical sensitivity/specificity 99%

Results

- Positive
 - o One pathogenic variant detected
 - Individual is a carrier of the associated disease
 - Screening for that disease should be offered to the individual's reproductive partner
 - Genetic counseling is recommended
- Negative
 - o No targeted pathogenic variants identified o For residual risk estimates, see Table 2

Limitations

- Variants other than those tested on this panel will not be detected
- Diagnostic errors can occur due to rare sequence variations

References

- ACOG Committee on Genetics. ACOG Committee Opinion No. 442: Preconception and prenatal carrier screening for genetic diseases in individuals of Eastern European Jewish descent. Obstet Gynecol. 2009;114(4):950-953
- Anderson SL, Ekstein J, et al. Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet. 2004;115(3):185-190
- Ben-Yosef T, Ness SL, et al. A mutation of PCDH15 among Ashkenazi Jews with the type 1 Usher syndrome. N Engl J Med. 2003;348(17):1664-1670
- Edelmann L, Wasserstein MP, et al. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. Am J Hum Genet. 2001:69(4):863-868
- Edvardson S, Shaag A, et al. Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am J Hum Genet. 2010;86(1):93-97
- Ekstein J, Rubin BY, et al. Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am J Med Genet A. 2004;129A(2):162-164
- Fields RR, Zhou G, et al. Usher syndrome type III: revised genomic structure of the USH3 gene and identification of novel mutations. Am J Hum Genet. 2002;71(3):607-617

- German J, Sanz MM, et al. Syndrome-causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat. 2007;28(8):743-753
- Glaser B, Blech I, et al. ABCC8 mutation allele frequency in the Ashkenazi Jewish population and risk of focal hyperinsulinemic hypoglycemia. Genet Med. 2011;13(10):891-894
- Gross SJ, Pletcher BA, et al. Carrier screening in individuals of Ashkenazi Jewish descent. Genet Med. 2008;10(1):54-56
- Kaback M, Lim-Steele J, et al. Tay-Sachs disease—carrier screening, prenatal diagnosis, and the molecular era. An international perspective, 1970 to 1993. The International TSD Data Collection Network. JAMA. 1993;270(19)2307-2315
- Matalon R, Michals-Matalon K. Canavan Disease. 1999
 Sep 16 [Updated 2011 Aug 11]. In: Pagon RA, Adam MP,
 Ardinger HH, et al., editors. GeneReviews [Internet].
 Seattle (WA): University of Washington, Seattle; 1993-2015 (www.ncbi.nlm.nih.gov/books/NBK1234/)
- Ness SL, Ben-Yosef T, et al. Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet. 2003;40(10):767-772
- Pastores GM, Hughes DA. Gaucher Disease. 2000 Jul 27
 [Updated 2015 Feb 26]. In: Pagon RA, Adam MP, Ardinger
 HH, et al., editors. GeneReviews [Internet]. Seattle (WA):
 University of Washington, Seattle; 1993-2015
 (www.ncbi.nlm.nih.gov/books/NBK1269/
- Schiffmann R, Grishchuk Y, et al. Mucolipidosis IV. 2005 Jan 28 [Updated 2015 Jul 30]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015 (www.ncbi.nlm.nih.gov/books/NBK1214/)
- Shaag A, Saada A, et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet. 1999;82(2):177-182
- Wasserstein MP, Schuchman EH. Acid Sphingomyelinase Deficiency. 2006 Dec 7 [Updated 2015 Jun 18]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015 (www.ncbi.nlm.nih.gov/ books/NBK1370/)

Table 1

Disease (Gene)	Disease Incidence in	Carrier Frequency in	Type of Disorder/Symptoms	
	Ashkenazi	Ashkenazi		
	Jews	Jews		
ABCC8-related	1/10,800	1/52	Hypoglycemia that varies from mild to severe neonatal onset	
hyperinsulinism (ABCC8)			With proper management, life span is normal	
Bloom syndrome (BLM)	1/40,000	1/100	Pre- and postnatal growth deficiency	
			Sun sensitive skin lesions appear at 1-2 years of age	
			Benign and malignant tumors in childhood	
			Telangiectatic hypo- and hyperpigmented skin lesions	
			Male sterility	
			Life expectancy is decreased due to malignancy	

Disease (Gene)	Disease Incidence in Ashkenazi Jews	Carrier Frequency in Ashkenazi Jews	Type of Disorder/Symptoms		
Canavan disease (ASPA)	1/10,000	1/50	 Macrocephaly Loss of motor control beginning at 3-5 months of age Failure to sit, stand, or ambulate Survival usually until childhood or teenage years 		
Familial dysautonomia (IKBKAP)	1/3,600	1/32	Delayed motor milestones in infants and progressive deterioration of gait throughout life Gastrointestinal dysfunction with emesis Altered sensitivity to pain and temperature Cardiovascular instability Survival typically until 30s		
Fanconi anemia group C (FANCC)	1/32,000	1/89	 Progressive bone marrow failure during first decade of life Increased risk of malignancy (hematological in ~20%, nonhematological in ~30%) Physical malformations may include short stature, abnormal skin pigmentation or malformatio of the eyes, ears, heart, forearms, thumbs, kidneys Survival usually until childhood or teenage years 		
Gaucher disease (GBA)	1/900	1/15	Type 1 (most prevalent type among Ashkenazi Jews) Bone disease Hepatosplenomegaly Anemia, thrombocytopenia Lung disease No primary central nervous system (CNS) disease Type 2 CNS degeneration by age 2 years, with a rapidly progressive course; survival until age 4 yea Type 3 Slowly progressive CNS degeneration; survival until 20s		
Glycogen storage disease type 1A (G6PC)	1/20,000	1/71	Hepatomegaly Growth delay/short stature Hypoglycemia, lactic acidosis, hyperuricemia, hyperlipidemia Additional long-term complications include osteoporosis, delayed puberty, renal disease, systemic hypertension, hepatic adenomas with potential for malignant transformation With treatment, individuals live into adulthood		
Joubert syndrome type 2 (TMEM216)	1/34,000	1/92	 "Molar tooth sign" cerebellar and brain stem malformation Hypotonia Developmental delay/intellectual disability Individuals typically have a normal lifespan, but a minority may have a shortened lifespan depending on severity 		
Lipoamide dehydrogenase deficiency (<i>DLD</i>)	1/35,000	1/94	Early onset disease presents in infancy Hypotonia, lethargy, and vomiting with progressive encephalopathy Survival usually until 1-2 years of life Primarily hepatic disease has variable onset from infancy to 30s Liver injury/failure, usually preceded by nausea/vomiting Typically normal intellect with no neurological findings Life span varies depending on the severity of the condition		
Maple syrup urine disease type 1B (<i>BCKDHB</i>)	1/50,000	1/113	Maple syrup odor in urine Classically affected individuals present within the first few days of life with Irritability Poor feeding and lethargy Intermittent apnea Progresses to coma and death within 7-10 days if untreated		
Mucolipidosis type IV (MCOLN1)	1/63,000	1/127	Severe psychomotor delay Progressive visual impairment due to retinal degeneration and corneal clouding Neurological state Static until age 30 in most affected individuals Neurological degeneration in ~15% Variable life expectancy, most individuals live into adulthood		
NEB-related nemaline myopathy (NEB)	1/47,000	1/108	 Presents in the first year of life with Muscle weakness of the face, neck, arms, and legs, which is static or very slowly progressive Hypotonia Feeding difficulties Individuals typically have a normal lifespan and have an active, independent life 		
Niemann-Pick disease type A (SMPD1)	1/32,000	1/90	Hepatosplenomegaly Developmental delay and severe neurodegeneration Progressive hypotonia and rigidity Cherry-red spot on the macula of the retina Survival until 3-5 years of age		

Disease (Gene)	Disease Incidence in Ashkenazi Jews	Carrier Frequency in Ashkenazi Jews	Type of Disorder/Symptoms
Tay-Sachs disease (HEXA)	1/3,000	1/30	 Progressive loss of motor skills beginning at 3–6 months of age Progressive neurodegeneration resulting in blindness, seizures, and eventually total incapacitation Survival until 4-6 years of age
Usher syndrome type 1F (PCDH15)	1/20,500	1/72	Congenital, bilateral, profound sensorineural hearing loss Adolescent-onset retinitis pigmentosa Loss of vestibular function
Usher syndrome type 3 (CLRN1)	1/82,000	1/143	 Postlingual, progressive hearing loss Late-onset progressive loss of vision due to retinitis pigmentosa Variable loss of vestibular function

Table 2

Disease (Gene)	Variants Tested (HGVS Nomenclature)	Variants Tested (Legacy Nomenclature)	Clinical Sensitivity in Ashkenazi Jews	Clinical Sensitivity in Non-Ashkenazi Jews	Carrier Risk for Ashkenazi Jews After Negative Test
ABCC8-related hyperinsulinism (ABCC8)	p.F1388del (c.4163_4165del) p.V187D (c.560T>A) c.3992-9G>A		97% (Glaser, 2011)	Unknown	1/1,700
Bloom syndrome (BLM)	p.Y736Lfs (c.2207_2212delinsTAGATTC)	2281del6/ins7	97% (German, 2007)	~3%	1/3,300
Canavan disease (ASPA)	c.433-2A>G p.Y231X (c.693C>A) p.E285A (c.854A>C) p.A305E (c.914C>A)		99% (Matalon, 2011)	55%	1/4,900
Familial dysautonomia (IKBKAP)	p.R696P (c.2087G>C) c.2204+6T>C	IVS20+6T>C	99% (Gross, 2008)	Unknown	1/3,100
Fanconi anemia group C (FANCC)	p.D23lfs (c.67delG) c.456+4A>T	322delG IVS4+4A>T	99% (Gross, 2008)	Unknown	1/8,800
Gaucher disease (GBA)	p.L29Afs (c.84dupG) c.115+1G>A p.N409S (c.1226A>G) c.1263_1317del55 p.V433L (c.1297G>T) p.D448H (c.1342G>C) p.L483P (c.1448T>C) p.R535H (c.1604G>A)	84G>GG IVS2+1G>A N370S del55bp V394L D409H L444P R496H	90% (Pastores, 2000)	55%	1/140
Glycogen storage disease type 1A (G6PC)	p.Q27Rfs (c.79delC) p.Y128Tfs (c.379_380dupTA) p.R83H (c.248G>A) p.R83C (c.247C>T) p.G188R (c.562G>C) p.Q242X (c.724C>T) p.Q347X (c.1039C>T) p.G270V (c.809G>T) p.F327del (c.979_981delTTC)		99% (Ekstein, 2004)	Varies by ethnicity	1/7,000
Joubert syndrome type 2 (TMEM216)	p.R73L (c.218G>T)		99% (Edvardson, 2010)	Unknown	1/9,100
Lipoamide dehydrogenase deficiency (<i>DLD</i>)	p.Y35X (c.104dupA) p.G229C (c.685G>T)		99% (Shaag, 1999)	Unknown	1/9,300
Maple syrup urine disease type 1B (BCKDHB)	p.R183P (c.548G>C) p.G278S (c.832G>A) p.E372X (c.1114G>T)		99% (Edelmann, 2001)	Unknown	1/11,000

Disease (<i>Gene</i>)	Variants Tested (HGVS Nomenclature)	Variants Tested (Legacy Nomenclature)	Clinical Sensitivity in Ashkenazi Jews	Clinical Sensitivity in Non-Ashkenazi Jews	Carrier Risk for Ashkenazi Jews After Negative Test
Mucolipidosis type IV (MCOLN1)	c.406-2A>G g.511_6493del	IVS3-2A>G del6.4kb	95% (Schiffmann, 2005)	6-10%	1/2,500
NEB-related nemaline myopathy (NEB)	exon 55 del (p.R2478_D2512del)		99% (Anderson, 2004)	Unknown	1/10,700
Niemann-Pick disease type A (SMPD1)	p.L304P (c.911T>C) p.F333Sfs (c.996delC) p.R498L (c.1493G>T) p.R610del (c.1829 1831delGCC)	L302P fsP330 R496L R608del	90% (Wasserstein, 2006)	Varies by ethnicity	1/900
Tay-Sachs disease (<i>HEXA</i>)	7.6 kb del p.G269S (c.805G>A) c.1073+1G>A p.Y427Ifs (c.1274_1277dup TATC) c.1421+1G>C Pseudodeficiency alleles: p.R247W (c.739C>T) p.R249W (c.745C>T)	IVS9+1G>A 1278dupTATC IVS12+1G>C	94% (Kaback, 1993)	59%	1/480
Usher syndrome type 1F (<i>PCDH15</i>)	p.R245X (c.733C>T)		62% (Ben-Yosef, 2003)	Unknown	1/190
Usher syndrome type 3 (<i>CLRN1</i>)	p.N48K (c.144T>G)		98% (Fields, 2002; Ness, 2003)	Unknown	1/7,000