Beckwith-Wiedemann and Russell-Silver Syndromes

Beckwith-Weidemann syndrome (BWS) is a congenital overgrowth condition associated with neonatal hypoglycemia, macroglossia, macrosomia, hemihypertrophy and increased risk for embryonal tumors. Russell-Silver syndrome (RSS) is a congenital condition characterized by stunted growth, limb length asymmetry, and developmental delay. Testing can confirm a suspected clinical diagnosis of BWS or RSS.

DISEASE OVERVIEW

- **Incidence**
 - BWS: ~1/10,000-13,700 newborns
 - RSS: ~1/100,000 newborns

- **Symptoms**
 - **BWS (Major Findings)**
 - Macrosomia
 - Visceromegaly
 - Hemihyperplasia
 - Embryonal tumors in childhood (e.g., Wilms tumor, hepatoblastoma, neuroblastoma, rhabdomyosarcoma)
 - Macroglossia
 - Omphalocele
 - Renal abnormalities
 - Ear creases or pits
 - **RSS**
 - Pre- and postnatal growth deficiency
 - Proportionate short stature
 - Limb length asymmetry
 - Developmental delay and/or learning disabilities
 - Triangular facies, broad forehead, narrow chin

GENETICS

- **Etiology**
 - **Causes of BWS**
 - 50% have loss of maternal methylation on chromosome 15q11 imprinting center (IC)2
 - 20% have paternal uniparental disomy (UPD) for chromosome 11p15
 - 5% have gain of methylation in maternal IC1
 - Pathogenic sequence variants in **CDKN1C**
 - 5-10% of nonfamilial cases
 - ~40% of familial cases
 - <1% cytogenetic abnormalities involving 11p15
 - **Causes of RSS**
 - 35-50% have hypomethylation of paternal IC1
 - 10% have maternal UPD of chromosome 7
 - ~40% have an unknown genetic mechanism

- **Inheritance**
 - Sporadic in 85% of BWS cases and 60% of RSS cases
 - Autosomal dominant in 15% of BWS cases due to parent-of-origin transmission
Penetrance
- Complete for RSS
- Incomplete for BWS due to methylation (eg, individuals with a paternally inherited CDKN1C pathogenic variant will not show features of BWS)

TEST INTERPRETATION

Clinical sensitivity/specificity: 75% for BWS; 35-50% for RSS
Analytical sensitivity/specificity: 99%

Results

<table>
<thead>
<tr>
<th>Result</th>
<th>BWS</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>IC2 hypomethylation AND normal IC1 methylation</td>
<td>IC1 hypomethylation</td>
</tr>
<tr>
<td></td>
<td>IC1 hypermethylation AND hypomethylation of IC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC1 hypermethylation AND normal methylation of IC2</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>Normal methylation patterns:</td>
<td>Normal methylation patterns:</td>
</tr>
<tr>
<td></td>
<td>• Risk reduced but not excluded</td>
<td>• Risk reduced but not excluded</td>
</tr>
<tr>
<td></td>
<td>• Consider CDKN1C gene sequencing and deletion/duplication</td>
<td>• Consider UPD analysis of chromosome 7</td>
</tr>
<tr>
<td></td>
<td>• Consider chromosome analysis</td>
<td></td>
</tr>
</tbody>
</table>

Limitations
Molecular mechanisms causing BWS or RSS that do not affecting methylation patterns are not assessed, including:
- Maternal UPD of chromosome 7
- Chromosomal translocations, inversions, deletions, or duplications
- Pathogenic CDKN1C sequence variants, deletions/duplications
Diagnostic errors can occur due to rare sequence variations.