Acute Myelogenous Leukemia

Indications for Ordering

- Refine classification and determine prognosis in patients with acute myelogenous leukemia (AML)
- Disease monitoring and prediction of relapse risk in postchemotherapy patients with documented NPM1-mutated disease

Test Description

Quantitative – total RNA is extracted, reverse transcribed into complementary DNA (cDNA), and amplified with allele-specific primers

- NPM1 mutation detection by real-time polymerase chain reaction (RT-PCR), quantitative
 - Targets types A, B, D, and may detect other rare variants in exon 11
 - Normalized copy number is calculated relative to the ABL1 reference gene

Qualitative – genomic DNA is extracted; results are then compared to the published germline sequence

- Myeloid malignancies mutation panel
 - Next generation sequencing (NGS) library construction from genomic DNA
 - Enrichment for regions of interest by hybridization
 - Massively parallel sequencing
- CEBPA mutation detection
 - 2 overlapping fragments of the entire CEBPA coding sequence are PCR amplified and sequenced
- Leukostrat CDx FLT3 mutation testing
 - Fragment containing exon 14/15 is PCR amplified
 - IDH1 and IDH2 mutation analysis, exon 4
 - Fragment containing exon 4 is PCR amplified

Tests to Consider

Primary tests

Initial prognostication in AML

Myeloid Malignancies Mutation Panel by Next Generation Sequencing 20111117
- Assess for single gene mutations
- Preferred test for initial prognostication in AML

NPM1 Mutation Detection by RT-PCR, Quantitative 3000066
- Detect NPM1 mutations at diagnosis in patients with AML
- Use for minimal residual disease monitoring

CEBPA Mutation Detection 2004247
- Initial test for prognostication of CN-AML

LeukoStrat CDx FLT3 Mutation Detection by PCR 2014683
- Aid in the assessment of AML patients for whom midostaurin (RYDAPT) treatment is being considered

IDH1 and IDH2 Mutation Analysis, exon 4 2006444
- Detect IDH1 R132 and IDH2 R140/R172 mutations in whole blood or bone marrow
- Aid in assessment for possible treatment of relapsed/refractory AML patients with enasidenib (IDHIFA)

Disease Overview

Treatment issues

- 50% of AML cases are cytogenetically normal and considered to be intermediate risk
- Mortality varies significantly among patients within intermediate risk group
- Mutational testing may help in AML prognostication
 - Presence of mutations may help in AML prognostication

Genetics

Genes – NPM1, CEBPA, FLT3, IDH1 and IDH2

Structure/function

NPM1
- Located on exon 11
- Tetranucleotide insertions alter the reading frame of translation at the C-terminus of NPM1
- Nucleolar phosphoprotein shuttles between nucleus and cytoplasm

CEBPA
- Transcription factor involved in myeloid differentiation
- Typical pattern is that both alleles are mutated
 - 1 allele has frameshift mutation in the N-terminal transcriptional activation domain and
 - 1 allele has mutation in C-terminal basic-leucine zipper domain

FLT3
- Internal tandem duplications (ITDs) on exon 14/15; D835 mutation on exon 20
- Tyrosine kinase receptor regulates cell survival and maturation

IDH1 and IDH2
- Located on exon 4
- Enzyme involved in citric acid cycle
Test Interpretation

Positive result
- Favorable outcome
 - *NPM1* mutation in the absence of *FLT3* ITDs (at diagnosis)
 - Double (biallelic) *CEBPA* mutations
- Unfavorable outcome
 - *FLT3* ITD mutations
 - Residual *NPM1* mutated transcripts (postchemotherapy)

Limitations
- Negative test result does not exclude
 - Presence of mutations below the detection limit
 - Presence of rare mutations not detected by these tests
- All markers should be interpreted as a group and not individually