Acute Myelogenous Leukemia with Myelodysplastic Syndrome (MDS) or Therapy-Related MDS Panel by FISH

Indications for Ordering

Diagnosis in conjunction with cytogenetics for individuals with suspected therapy-related MDS

Test Description

Fluorescence in situ hybridization (FISH)
- Performed on bone marrow cells using unstimulated cultures either from direct harvest or 24-hr culture
 - Peripheral blood can be used but is not preferred
- Probes
 - -5/del(5q)
 - -7/del(7q)
 - +8
 - del(20q)
 - MLL rearrangements (11q23)
 - EVI1 rearrangements [inv(3) or t(3;3)]
 - RUNX1-RUNX1T1 fusion t(8;21)
 - PML-RARA fusion t(15;17)
 - CBFB inv(16) or t(16q)

Tests to Consider

Primary test

Acute Myelogenous Leukemia (AML) with Myelodysplastic Syndrome (MDS) or Therapy-Related AML, by FISH 2002653
- Use in conjunction with conventional cytogenetics for diagnosis, prognosis, and monitoring in therapy-related MDS or AML associated with MDS

Related tests

Chromosome Analysis, Bone Marrow 2002292
- Diagnosis, prognosis, and monitoring of MDS and/or AML

Chromosome Analysis, Bone Marrow with Reflex to Genomic Microarray 2007130
- Diagnosis, prognosis, and monitoring of MDS
- If chromosome analysis is “normal” or “no growth,” then genomic microarray testing will be added

Cytogenomic SNP Microarray – Oncology 2006325
- Preferred test for fresh specimens at time of diagnosis for detecting prognostically important genomic abnormalities in leukemias/lymphomas and solid tumors involving
 - Loss/gain of DNA
 - Loss of heterozygosity (LOH)
 - Monitor disease progression and response to therapy

Chromosome FISH, Interphase 2002298
- Specific FISH probes must be requested and include
 - -5/del(5q)
 - -7/del(7q)
 - +8
 - del(20q)
 - MLL rearrangements (11q23)
 - EVI1 rearrangements [inv(3) or t(3;3)]
 - RUNX1-RUNX1T1 fusion t(8;21)
 - PML-RARA fusion t(15;17)
 - CBFB inv(16) or t(16q)

Myelodysplastic Syndrome (MDS) Panel by FISH 2002709
- Use in conjunction with conventional cytogenetics for diagnosis, prognosis, and monitoring of MDS

Myeloid Malignancies Mutation Panel by Next Generation Sequencing 2011117
- Assess for single gene mutations, including substitutions and insertions and deletions that may have diagnostic, prognostic, and/or therapeutic significance

Disease Overview

- Myelodysplastic disorders are clonal hematopoietic malignancies characterized by
 - Ineffective hematopoiesis
 - Cytopenia
 - Unilineage or multilineage dysplasia
 - Increased susceptibility to leukemic transformation
- 10-15% of MDS follows treatment with chemotherapy or radiation

AML with myelodysplasia-related change
- Represents 25-30% of AML cases
- Elderly individuals predominate
- Generally presents with pancytopenia
- Chromosome abnormalities are similar to those found in MDS unrelated to cytotoxic agents
 - Often involve gain or loss of major segments of specific chromosomes with complex karyotypes
Treatment-related myeloid neoplasms

- Late complication of cytotoxic or radiation therapy
 - Rate of development does not differ between those with a hematologic versus solid malignancy
- Accounts for 10-20% of all AML, MDS, and MDS/myeloproliferative neoplasms (MPN)
- 90% have clonal chromosomal abnormality
 - Often complex
 - Similar to those observed in AML with myelodysplasia-related change
- Disease differs based on type of therapy (alkylating agent/radiation versus topoisomerase II)
 - Individual may have received both therapies at some point in their illness, meaning either presentation can occur
 - t-MDS/t-AML arising after alkylating agent and/or radiation therapy
 - 80-85% of treatment-related myeloid neoplasms
 - Latency period 3-7 years (median 5 years)
 - Initial presentation – MDS with trilineage dysplasia
 - Cytogenetics (most common)
 - Abnormalities of chromosomes 5, 7, or complex karyotypes
 - t-AML/t-MDS arising after topoisomerase II inhibitor therapy
 - ~15% of treatment-related myeloid neoplasms
 - Latency period 2-3 years
 - Initial presentation – AML (typically no antecedent MDS)
- Cytogenetics
 - Balanced translocations
 - MLL rearrangements
 - t(15;17)
 - inv (16)
 - Therapy-related myeloid neoplasms have a significantly worse outcome than do their de novo counterparts
 - Exceptions are t-AML with inv(16) or t(15;17)

Diagnostic criteria

- AML with myelodysplasia-related changes
 - >20% blood or marrow blasts AND
 - Previous history of MDS OR
 - MDS-related cytogenetic abnormality OR
 - Multilineage dysplasia
 - Dysplasia in at least 50% of cells in 2 or more hematopoietic lineages
 - Absence of cytogenetic abnormalities described in AML with recurrent genetic abnormalities
 - No history of prior cytotoxic therapy for an unrelated disease
- Therapy-related myeloid neoplasms (t-MDS, t-MDS/MPN, or t-AML)
 - Myeloid neoplasms (excluding MPNs) that arise as a consequence of cytotoxic or radiation therapy
 - May be subdivided by blast count but behaves as a single biologic disease

Diagnostic issues

- MDS associated with AML or cytotoxic therapy has a poor prognosis which is related to cytogenetic abnormalities
- FISH
 - Detects specific genomic aberrations not detected by cytogenetics (e.g., cryptic rearrangements)
 - Aids in classification of disease risk in MDS for therapy decisions

See Revised International Prognostic Scoring System (IPSS-R) (Greenberg, Blood 2012) below for risk stratification

Genetics

Gene – MLL

Structure/function

- Maps to 11q23
- Transcriptional regulatory factor
- Multiple translocation partners
- Most common translocations
 - t(9;11)(p22;q23)
 - t(11;19)(q23;p13)

Test Interpretation

Analytical sensitivity/specificity – >95%

- Limit of detection is probe dependent – ~1-5% in interphase nuclei

Results

- Normal – no -5/del(5q31), -7/del(7q31), or 11q23 rearrangement detected
- Abnormal – genetic abnormality detected
 - -5/del(5q)
 - Poor prognosis
 - -7/del(7q)
 - Poor prognosis
 - t(11q23:var)
 - Generally associated with poor prognosis

Limitations

- MLL gene at 11q23 has multiple translocation partners which are not identified by this test

Panel detects only the specific aberrations targeted by the probes