Alpha-1-Antitrypsin Deficiency

Indications for Ordering
- Diagnostic testing for alpha-1-antitrypsin (AAT) deficiency or carrier screening for AAT deficiency

Test Description
- AAT genotyping with reflex to phenotyping
 - Protein concentration measured by immunoturbidimetric assay
 - Genotyping by PCR followed by fluorescence monitoring to detect the Z (c.1024G>A, p.E342K) and S (c.791A>T, p.E264V) alleles in the SERPINA1 gene
 - Phenotyping performed by qualitative isoelectric focusing electrophoresis/immunoturbidimetric assay
- Reflexes to phenotyping when protein concentration <90 mg/dL and individual is not homozygous or compound heterozygous for the S or Z deficiency alleles by genotyping

Tests to Consider
- **Alpha-1-Antitrypsin (SERPINA1) Enzyme Concentration and 2 Mutations with Reflex to Alpha-1-Antitrypsin Phenotype** 0051256
 - Preferred test to identify AAT deficiency and causative DNA and protein variants
- **Alpha-1-Antitrypsin 0050001**
 - Determines AAT enzyme plasma concentration for the initial evaluation of AAT deficiency
- **Alpha-1-Antitrypsin Phenotype (Includes Alpha-1-Antitrypsin)** 0080500
 - Determines specific AAT protein variant(s) in individual with decreased concentration of AAT (<90mg/dL)

Disease Overview

Incidence
- 1/3,000-5,000 individuals of European ancestry
- Most common nonenvironmental cause of emphysema
- Cause of 1 in every 6 lung transplants performed

Age of onset
- Smokers develop lung disease in 40s
- Nonsmokers develop lung disease in 50s

Symptoms
- **Adults**
 - Pulmonary – dyspnea, wheezing, cough, and phlegm, early onset emphysema (panacinar)
 - Hepatic – liver dysfunction, cirrhosis
 - Occurs more often in individuals with Z allele
 - Hepatitis with jaundice
 - Chronic liver disease
 - Skin – panniculitis
 - Necrotic areas with spontaneous suppuration
- **Neonates**
 - Small percentage of affected newborns have hepatitis with cholesatic jaundice (prolonged jaundice with conjugated hyperbilirubinemia)
 - Low AAT levels are also found in neonatal respiratory distress syndrome and severe protein-losing disorders
 - Rare associated diseases
 - Granulomatosis with polyangiitis, necrotizing panniculitis, aneurysms of aortic and brain arteries
 - Complications
 - Hepatocellular carcinoma and cholangiocarcinoma

Physiology
- AAT is a glycoprotein mainly synthesized in the liver
- AAT deficiency results in uninhibited free neutrophil elastase, which leads to degradation of the connective protein elastin in the alveoli
- Increases the risk for developing severe lung disease during early adulthood
- Oxidants in cigarette smoke inactivate AAT protein, causing further AAT impairment
- Symptoms in smokers begin ≥10 years earlier than in nonsmokers

Genetics

Gene – SERPINA1

Inheritance – autosomal recessive

Pathogenic Variants
- AAT deficiency is caused by two pathogenic variants in the SERPINA1 gene on opposite chromosomes
- 100 allelic variants classified based on mobility (proteinase inhibitor [PI] typing)
- Z and S alleles account for 95% of deficiency alleles
- Normal phenotype – PI*MM
Test Interpretation

Sensitivity/specificity

• Clinical sensitivity of genotyping – 95% (Stoller, 2006)
• Analytical sensitivity/specificity of genotyping – 99%

Positive result

<table>
<thead>
<tr>
<th>Allele Variants</th>
<th>Emphysema Risk</th>
<th>Liver Disease Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Background</td>
<td>Low</td>
</tr>
<tr>
<td>MS</td>
<td>Background</td>
<td>Low</td>
</tr>
<tr>
<td>MZ</td>
<td>Background</td>
<td>Low</td>
</tr>
<tr>
<td>SS</td>
<td>Background</td>
<td>Low</td>
</tr>
<tr>
<td>SZ</td>
<td>20%-50%</td>
<td>Intermediate</td>
</tr>
<tr>
<td>ZZ</td>
<td>80%-100%</td>
<td>Moderately high to high</td>
</tr>
<tr>
<td>Null-Null</td>
<td>100%</td>
<td>High</td>
</tr>
</tbody>
</table>

Limitations

• Acutely ill AAT-deficient patients may have falsely normal AAT concentrations
• Only the Z (c.1024G>A, p.E342K) and S (c.791A>T, p.E264V) alleles are detected by genotyping
• Diagnostic errors can occur due to rare sequence variations

References